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Preface
Hadoop Real-World Solutions Cookbook helps developers become more comfortable with,  
and proficient at solving problems in, the Hadoop space. Readers will become more familiar 
with a wide variety of Hadoop-related tools and best practices for implementation.

This book will teach readers how to build solutions using tools such as Apache Hive, Pig, 
MapReduce, Mahout, Giraph, HDFS, Accumulo, Redis, and Ganglia.

This book provides in-depth explanations and code examples. Each chapter contains a set 
of recipes that pose, and then solve, technical challenges and that can be completed in 
any order. A recipe breaks a single problem down into discrete steps that are easy to follow. 
This book covers unloading/loading to and from HDFS, graph analytics with Giraph, batch 
data analysis using Hive, Pig, and MapReduce, machine-learning approaches with Mahout, 
debugging and troubleshooting MapReduce jobs, and columnar storage and retrieval of 
structured data using Apache Accumulo.

This book will give readers the examples they need to apply the Hadoop technology to their 
own problems.

What this book covers
Chapter 1, Hadoop Distributed File System – Importing and Exporting Data, shows several 
approaches for loading and unloading data from several popular databases that include 
MySQL, MongoDB, Greenplum, and MS SQL Server, among others, with the aid of tools  
such as Pig, Flume, and Sqoop.

Chapter 2, HDFS, includes recipes for reading and writing data to/from HDFS. It shows  
how to use different serialization libraries, including Avro, Thrift, and Protocol Buffers.  
Also covered is how to set the block size and replication, and enable LZO compression.

Chapter 3, Extracting and Transforming Data, includes recipes that show basic Hadoop  
ETL over several different types of data sources. Different tools, including Hive, Pig, and  
the Java MapReduce API, are used to batch-process data samples and produce one or  
more transformed outputs.
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Chapter 4, Performing Common Tasks Using Hive, Pig, and MapReduce, focuses on how 
to leverage certain functionality in these tools to quickly tackle many different classes of 
problems. This includes string concatenation, external table mapping, simple table joins, 
custom functions, and dependency distribution across the cluster.

Chapter 5, Advanced Joins, contains recipes that demonstrate more complex and useful  
join techniques in MapReduce, Hive, and Pig. These recipes show merged, replicated, and 
skewed joins in Pig as well as Hive map-side and full outer joins. There is also a recipe that 
shows how to use Redis to join data from an external data store.

Chapter 6, Big Data Analysis, contains recipes designed to show how you can put Hadoop 
to use to answer different questions about your data. Several of the Hive examples will 
demonstrate how to properly implement and use a custom function (UDF) for reuse 
in different analytics. There are two Pig recipes that show different analytics with the 
Audioscrobbler dataset and one MapReduce Java API recipe that shows Combiners.

Chapter 7, Advanced Big Data Analysis, shows recipes in Apache Giraph and Mahout  
that tackle different types of graph analytics and machine-learning challenges.

Chapter 8, Debugging, includes recipes designed to aid in the troubleshooting and testing  
of MapReduce jobs. There are examples that use MRUnit and local mode for ease of testing. 
There are also recipes that emphasize the importance of using counters and updating task 
status to help monitor the MapReduce job.

Chapter 9, System Administration, focuses mainly on how to performance-tune and optimize 
the different settings available in Hadoop. Several different topics are covered, including basic 
setup, XML configuration tuning, troubleshooting bad data nodes, handling NameNode failure, 
and performance monitoring using Ganglia.

Chapter 10, Persistence Using Apache Accumulo, contains recipes that show off many of  
the unique features and capabilities that come with using the NoSQL datastore Apache 
Accumulo. The recipes leverage many of its unique features, including iterators, combiners, 
scan authorizations, and constraints. There are also examples for building an efficient 
geospatial row key and performing batch analysis using MapReduce.

What you need for this book
Readers will need access to a pseudo-distributed (single machine) or fully-distributed  
(multi-machine) cluster to execute the code in this book. The various tools that the recipes 
leverage need to be installed and properly configured on the cluster. Moreover, the code 
recipes throughout this book are written in different languages; therefore, it’s best if  
readers have access to a machine with development tools they are comfortable using.
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Who this book is for
This book uses concise code examples to highlight different types of real-world problems you 
can solve with Hadoop. It is designed for developers with varying levels of comfort using Hadoop 
and related tools. Hadoop beginners can use the recipes to accelerate the learning curve and 
see real-world examples of Hadoop application. For more experienced Hadoop developers, 
many of the tools and techniques might expose them to new ways of thinking or help clarify a 
framework they had heard of but the value of which they had not really understood.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds  
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: “All of the Hadoop filesystem shell commands take 
the general form hadoop fs –COMMAND.”

A block of code is set as follows:

weblogs = load ‘/data/weblogs/weblog_entries.txt’ as 
                (md5:chararray, 
                  url:chararray, 
                  date:chararray, 
                  time:chararray, 
                  ip:chararray);

md5_grp = group weblogs by md5 parallel 4;

store md5_grp into ‘/data/weblogs/weblogs_md5_groups.bcp’;

When we wish to draw your attention to a particular part of a code block, the relevant lines or 
items are set in bold:

weblogs = load ‘/data/weblogs/weblog_entries.txt’ as 
                (md5:chararray, 
                  url:chararray, 
                  date:chararray, 
                  time:chararray, 
                  ip:chararray);

md5_grp = group weblogs by md5 parallel 4;

store md5_grp into ‘/data/weblogs/weblogs_md5_groups.bcp’;
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Any command-line input or output is written as follows:

hadoop distcp –m 10 hdfs://namenodeA/data/weblogs hdfs://namenodeB/data/
weblogs

New terms and important words are shown in bold. Words that you see on the screen, in 
menus or dialog boxes for example, appear in the text like this: “To build the JAR file, download 
the Jython java installer, run the installer, and select Standalone from the installation menu”.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you  
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from  
your account at http://www.packtpub.com. If you purchased this book elsewhere,  
you can visit http://www.packtpub.com/support and register to have the files  
e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you would report this to us. By doing so, you can save other readers from frustration 
and help us improve subsequent versions of this book. If you find any errata, please report them 
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata 
submission form link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded on our website, or added to any  
list of existing errata, under the Errata section of that title. Any existing errata can be viewed  
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you  
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with  
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com
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Hadoop Distributed File 
System – Importing and 

Exporting Data

In this chapter we will cover:

 f Importing and exporting data into HDFS using the Hadoop shell commands

 f Moving data efficiently between clusters using Distributed Copy

 f Importing data from MySQL into HDFS using Sqoop

 f Exporting data from HDFS into MySQL using Sqoop

 f Configuring Sqoop for Microsoft SQL Server

 f Exporting data from HDFS into MongoDB

 f Importing data from MongoDB into HDFS

 f Exporting data from HDFS into MongoDB using Pig

 f Using HDFS in a Greenplum external table

 f Using Flume to load data into HDFS
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Introduction
In a typical installation, Hadoop is the heart of a complex flow of data. Data is often collected 
from many disparate systems. This data is then imported into the Hadoop Distributed File 
System (HDFS). Next, some form of processing takes place using MapReduce or one of the 
several languages built on top of MapReduce (Hive, Pig, Cascading, and so on). Finally, the 
filtered, transformed, and aggregated results are exported to one or more external systems.

For a more concrete example, a large website may want to produce basic analytical data 
about its hits. Weblog data from several servers is collected and pushed into HDFS. A 
MapReduce job is started, which runs using the weblogs as its input. The weblog data 
is parsed, summarized, and combined with the IP address geolocation data. The output 
produced shows the URL, page views, and location data by each cookie. This report is 
exported into a relational database. Ad hoc queries can now be run against this data.  
Analysts can quickly produce reports of total unique cookies present, pages with the  
most views, breakdowns of visitors by region, or any other rollup of this data.

The recipes in this chapter will focus on the process of importing and exporting data to and 
from HDFS. The sources and destinations include the local filesystem, relational databases, 
NoSQL databases, distributed databases, and other Hadoop clusters.

Importing and exporting data into HDFS 
using Hadoop shell commands

HDFS provides shell command access to much of its functionality. These commands are 
built on top of the HDFS FileSystem API. Hadoop comes with a shell script that drives all 
interaction from the command line. This shell script is named hadoop and is usually located 
in $HADOOP_BIN, where $HADOOP_BIN is the full path to the Hadoop binary folder. For 
convenience, $HADOOP_BIN should be set in your $PATH environment variable. All of the 
Hadoop filesystem shell commands take the general form hadoop fs -COMMAND.

To get a full listing of the filesystem commands, run the hadoop shell script passing it the fs 
option with no commands.

hadoop fs
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These command names along with their functionality closely resemble Unix shell commands. 
To get more information about a particular command, use the help option.

hadoop fs –help ls

The shell commands and brief descriptions can also be found online in the official 
documentation located at http://hadoop.apache.org/common/docs/r0.20.2/hdfs_
shell.html

In this recipe, we will be using Hadoop shell commands to import data into HDFS and export 
data from HDFS. These commands are often used to load ad hoc data, download processed 
data, maintain the filesystem, and view the contents of folders. Knowing these commands is  
a requirement for efficiently working with HDFS.

http://hadoop.apache.org/common/docs/r0.20.2/hdfs_shell.html
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Getting ready
You will need to download the weblog_entries.txt dataset from the Packt website 
http://www.packtpub.com/support.

How to do it...
Complete the following steps to create a new folder in HDFS and copy the weblog_entries.
txt file from the local filesystem to HDFS:

1. Create a new folder in HDFS to store the weblog_entries.txt file:
hadoop fs –mkdir /data/weblogs

2. Copy the weblog_entries.txt file from the local filesystem into the new folder 
created in HDFS:
hadoop fs –copyFromLocal weblog_entries.txt /data/weblogs

3. List the information in the weblog_entires.txt file:
hadoop fs –ls /data/weblogs/weblog_entries.txt

The result of a job run in Hadoop may be used by an external system, 
may require further processing in a legacy system, or the processing 
requirements might not fit the MapReduce paradigm. Any one of these 
situations will require data to be exported from HDFS. One of the simplest 
ways to download data from HDFS is to use the Hadoop shell.

4. The following code will copy the weblog_entries.txt file from HDFS to the local 
filesystem's current folder:

hadoop fs –copyToLocal /data/weblogs/weblog_entries.txt ./weblog_
entries.txt
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When copying a file from HDFS to the local filesystem, keep in mind the space available on 
the local filesystem and the network connection speed. It's not uncommon for HDFS to have 
file sizes in the range of terabytes or even tens of terabytes. In the best case scenario, a ten 
terabyte file would take almost 23 hours to be copied from HDFS to the local filesystem over  
a 1-gigabit connection, and that is if the space is available!

Downloading the example code for this book
You can download the example code files for all the Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

How it works...
The Hadoop shell commands are a convenient wrapper around the HDFS FileSystem API.  
In fact, calling the hadoop shell script and passing it the fs option sets the Java application 
entry point to the org.apache.hadoop.fs.FsShell class. The FsShell class then 
instantiates an org.apache.hadoop.fs.FileSystem object and maps the filesystem's 
methods to the fs command-line arguments. For example, hadoop fs –mkdir /data/
weblogs, is equivalent to FileSystem.mkdirs(new Path("/data/weblogs")). 
Similarly, hadoop fs –copyFromLocal weblog_entries.txt /data/weblogs is 
equivalent to FileSystem.copyFromLocal(new Path("weblog_entries.txt"), 
new Path("/data/weblogs")). The same applies to copying the data from HDFS to the 
local filesystem. The copyToLocal Hadoop shell command is equivalent to FileSystem.
copyToLocal(new Path("/data/weblogs/weblog_entries.txt"), new 
Path("./weblog_entries.txt")). More information about the FileSystem class  
and its methods can be found on its official Javadoc page: http://hadoop.apache.org/
docs/r0.20.2/api/org/apache/hadoop/fs/FileSystem.html.

The mkdir command takes the general form of hadoop fs –mkdir PATH1 PATH2.  
For example, hadoop fs –mkdir /data/weblogs/12012012 /data/
weblogs/12022012 would create two folders in HDFS: /data/weblogs/12012012  
and /data/weblogs/12022012, respectively. The mkdir command returns 0 on  
success and -1 on error:

hadoop fs –mkdir /data/weblogs/12012012 /data/weblogs/12022012

hadoop fs –ls /data/weblogs

http://www.PacktPub.com
http://www.PacktPub.com/support
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/fs/FileSystem.html
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/fs/FileSystem.html
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The copyFromLocal command takes the general form of hadoop fs –copyFromLocal 
LOCAL_FILE_PATH URI. If the URI is not explicitly given, a default is used. The default 
value is set using the fs.default.name property from the core-site.xml file. 
copyFromLocal returns 0 on success and -1 on error.

The copyToLocal command takes the general form of hadoop fs –copyToLocal 
[-ignorecrc] [-crc] URI LOCAL_FILE_PATH. If the URI is not explicitly given, a default 
is used. The default value is set using the fs.default.name property from the core-site.
xml file. The copyToLocal command does a Cyclic Redundancy Check (CRC) to verify that 
the data copied was unchanged. A failed copy can be forced using the optional –ignorecrc 
argument. The file and its CRC can be copied using the optional –crc argument.

There's more...
The command put is similar to copyFromLocal. Although put is slightly more general,  
it is able to copy multiple files into HDFS, and also can read input from stdin.

The get Hadoop shell command can be used in place of the copyToLocal command.  
At this time they share the same implementation.

When working with large datasets, the output of a job will be partitioned into one or more 
parts. The number of parts is determined by the mapred.reduce.tasks property which  
can be set using the setNumReduceTasks() method on the JobConf class. There will 
be one part file for each reducer task. The number of reducers that should be used varies 
from job to job; therefore, this property should be set at the job and not the cluster level. 
The default value is 1. This means that the output from all map tasks will be sent to a single 
reducer. Unless the cumulative output from the map tasks is relatively small, less than a 
gigabyte, the default value should not be used. Setting the optimal number of reduce tasks 
can be more of an art than science. In the JobConf documentation it is recommended that 
one of the two formulae be used:

0.95 * NUMBER_OF_NODES * mapred.tasktracker.reduce.tasks.maximum

Or

1.75 * NUMBER_OF_NODES * mapred.tasktracker.reduce.tasks.maximum

For example, if your cluster has 10 nodes running a task tracker and the mapred.
tasktracker.reduce.tasks.maximum property is set to have a maximum of five reduce 
slots, the formula would look like this 0.95 * 10 * 5 = 47.5. Since the number of reduce slots 
must be a nonnegative integer, this value should be rounded or trimmed.
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The JobConf documentation provides the following rationale for using these multipliers at 
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/
JobConf.html#setNumReduceTasks(int):

With 0.95 all of the reducers can launch immediately and start transferring map 
outputs as the maps finish. With 1.75 the faster nodes will finish their first round  
of reduces and launch a second wave of reduces doing a much better job of  
load balancing.

The partitioned output can be referenced within HDFS using the folder name. A job given 
the folder name will read each part file when processing. The problem is that the get and 
copyToLocal commands only work on files. They cannot be used to copy folders. It would 
be cumbersome and inefficient to copy each part file (there could be hundreds or even 
thousands of them) and merge them locally. Fortunately, the Hadoop shell provides the 
getmerge command to merge all of the distributed part files into a single output file and  
copy that file to the local filesystem.

The following Pig script illustrates the getmerge command:

weblogs = load '/data/weblogs/weblog_entries.txt' as 
                (md5:chararray, 
                  url:chararray, 
                  date:chararray, 
                  time:chararray, 
                  ip:chararray);

md5_grp = group weblogs by md5 parallel 4;

store md5_grp into '/data/weblogs/weblogs_md5_groups.bcp';

The Pig script can be executed from the command line by running the following command:

pig –f weblogs_md5_group.pig

This Pig script reads in each line of the weblog_entries.txt file. It then groups the data 
by the md5 value. parallel 4 is the Pig-specific way of setting the number of mapred.
reduce.tasks. Since there are four reduce tasks that will be run as part of this job, we 
expect four part files to be created. The Pig script stores its output into /data/weblogs/
weblogs_md5_groups.bcp.
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Notice that weblogs_md5_groups.bcp is actually a folder. Listing that folder will show the 
following output:

Within the /data/weblogs/weblogs_md5_groups.bcp folder, there are four part files: 
part-r-00000, part-r-00001, part-r-00002, and part-r-00003.

The getmerge command can be used to merge all four of the part files and then copy the 
singled merged file to the local filesystem as shown in the following command line:

hadoop fs –getmerge /data/weblogs/weblogs_md5_groups.bcp weblogs_md5_
groups.bcp

Listing the local folder we get the following output:

See also
 f The Reading and writing data to HDFS recipe in Chapter 2, HDFS shows how to use 

the FileSystem API directly.

 f The following links show the different filesystem shell commands and the Java API 
docs for the FileSystem class:

 � http://hadoop.apache.org/common/docs/r0.20.2/hdfs_shell.
html

 � http://hadoop.apache.org/docs/r0.20.2/api/org/apache/
hadoop/fs/FileSystem.html

http://hadoop.apache.org/common/docs/r0.20.2/hdfs_shell.html
http://hadoop.apache.org/common/docs/r0.20.2/hdfs_shell.html
http://hadoop.apache.org/common/docs/r0.20.2/hdfs_shell.html
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/fs/FileSystem.html
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/fs/FileSystem.html
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/fs/FileSystem.html
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Moving data efficiently between clusters 
using Distributed Copy

Hadoop Distributed Copy (distcp) is a tool for efficiently copying large amounts of data  
within or in between clusters. It uses the MapReduce framework to do the copying. The 
benefits of using MapReduce include parallelism, error handling, recovery, logging, and 
reporting. The Hadoop Distributed Copy command (distcp) is useful when moving data 
between development, research, and production cluster environments.

Getting ready
The source and destination clusters must be able to reach each other.

The source cluster should have speculative execution turned off for map tasks. In the mapred-
site.xml configuration file, set mapred.map.tasks.speculative.execution to false. 
This will prevent any undefined behavior from occurring in the case where a map task fails.

The source and destination cluster must use the same RPC protocol. Typically, this means  
that the source and destination cluster should have the same version of Hadoop installed.

How to do it...
Complete the following steps to copy a folder from one cluster to another:

1. Copy the weblogs folder from cluster A to cluster B:
hadoop distcp hdfs://namenodeA/data/weblogs hdfs://namenodeB/data/
weblogs

2. Copy the weblogs folder from cluster A to cluster B, overwriting any existing files:
hadoop distcp –overwrite hdfs://namenodeA/data/weblogs hdfs://
namenodeB/data/weblogs

3. Synchronize the weblogs folder between cluster A and cluster B:

hadoop distcp –update hdfs://namenodeA/data/weblogs hdfs://
namenodeB/data/weblogs
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How it works...
On the source cluster, the contents of the folder being copied are treated as a large  
temporary file. A map-only MapReduce job is created, which will do the copying between 
clusters. By default, each mapper will be given a 256-MB block of the temporary file. For 
example, if the weblogs folder was 10 GB in size, 40 mappers would each get roughly 256  
MB to copy. distcp also has an option to specify the number of mappers.

hadoop distcp –m 10 hdfs://namenodeA/data/weblogs hdfs://namenodeB/data/
weblogs

In the previous example, 10 mappers would be used. If the weblogs folder was 10 GB in size, 
then each mapper would be given roughly 1 GB to copy.

There's more...
While copying between two clusters that are running different versions of Hadoop, it is 
generally recommended to use HftpFileSystem as the source. HftpFileSystem is  
a read-only filesystem. The distcp command has to be run from the destination server:

hadoop distcp hftp://namenodeA:port/data/weblogs hdfs://namenodeB/data/
weblogs

In the preceding command, port is defined by the dfs.http.address property in the 
hdfs-site.xml configuration file.

Importing data from MySQL into HDFS using 
Sqoop

Sqoop is an Apache project that is part of the broader Hadoop ecosphere. In many  
ways Sqoop is similar to distcp (See the Moving data efficiently between clusters  
using Distributed Copy recipe of this chapter). Both are built on top of MapReduce and  
take advantage of its parallelism and fault tolerance. Instead of moving data between 
clusters, Sqoop was designed to move data from and into relational databases using  
a JDBC driver to connect.

Its functionality is extensive. This recipe will show how to use Sqoop to import data  
from MySQL to HDFS using the weblog entries as an example.
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Getting ready
This example uses Sqoop v1.3.0.

If you are using CDH3, you already have Sqoop installed. If you are not running CDH3, you 
can find instructions for your distro at https://ccp.cloudera.com/display/CDHDOC/
Sqoop+Installation.

This recipe assumes that you have a MySQL instance up and running that can reach your 
Hadoop cluster. The mysql.user table is configured to accept a user connecting from 
the machine where you will be running Sqoop. Visit http://dev.mysql.com/doc/
refman//5.5/en/installing.html for more information on installing and  
configuring MySQL.

The MySQL JDBC driver JAR file has been copied to $SQOOP_HOME/libs. The driver can  
be downloaded from http://dev.mysql.com/downloads/connector/j/.

How to do it...
Complete the following steps to transfer data from a MySQL table to an HDFS file:

1. Create a new database in the MySQL instance:
CREATE DATABASE logs;

2. Create and load the weblogs table:
USE logs;

CREATE TABLE weblogs(

    md5             VARCHAR(32),

    url             VARCHAR(64),

    request_date    DATE,

    request_time    TIME,

    ip              VARCHAR(15)

);

LOAD DATA INFILE '/path/weblog_entries.txt' INTO TABLE weblogs

FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\r\n';

https://ccp.cloudera.com/display/CDHDOC/Sqoop+Installation
https://ccp.cloudera.com/display/CDHDOC/Sqoop+Installation
http://dev.mysql.com/doc/refman/5.5/en/installing.html
http://dev.mysql.com/doc/refman/5.5/en/installing.html
http://dev.mysql.com/downloads/connector/j/
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3. Select a count of rows from the weblogs table:
mysql> select count(*) from weblogs;

The output would be:

+----------+

| count(*) |

+----------+

|     3000 |

+----------+

1 row in set (0.01 sec)

4. Import the data from MySQL to HDFS:

sqoop import -m 1 --connect jdbc:mysql://<HOST>:<PORT>/logs 
--username hdp_usr --password test1 --table weblogs --target-dir /
data/weblogs/import

The output would be:

INFO orm.CompilationManager: Writing jar file:

/tmp/sqoop-jon/compile/f57ad8b208643698f3d01954eedb2e4d/weblogs.
jar

WARN manager.MySQLManager: It looks like you are importing from 
mysql.

WARN manager.MySQLManager: This transfer can be faster! Use the 
--direct

WARN manager.MySQLManager: option to exercise a MySQL-specific 
fast path.

...

INFO mapred.JobClient:     Map input records=3000

INFO mapred.JobClient:     Spilled Records=0

INFO mapred.JobClient:     Total committed heap usage 
(bytes)=85000192

INFO mapred.JobClient:     Map output records=3000

INFO mapred.JobClient:     SPLIT_RAW_BYTES=87

INFO mapreduce.ImportJobBase: Transferred 245.2451 KB in 13.7619 
seconds (17.8206 KB/sec)

INFO mapreduce.ImportJobBase: Retrieved 3000 records.
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How it works...
Sqoop loads the JDBC driver defined in the --connect statement from $SQOOP_HOME/libs, 
where $SQOOP_HOME is the full path to the location where Sqoop is installed. The --username 
and --password options are used to authenticate the user issuing the command against the 
MySQL instance. The mysql.user table must have an entry for the --username option and 
the host of each node in the Hadoop cluster; or else Sqoop will throw an exception indicating 
that the host is not allowed to connect to the MySQL Server.

mysql> USE mysql;

mysql> select host, user from user;

The output would be:

+------------+-----------+

| user       | host      |

+------------+-----------+

| hdp_usr    | hdp01     |

| hdp_usr    | hdp02     |

| hdp_usr    | hdp03     |

| hdp_usr    | hdp04     |

| root       | 127.0.0.1 |

| root       | ::1       |

| root       | localhost |

+------------+-----------+

7 rows in set (1.04 sec)

In this example, we connected to the MySQL server using hdp_usr. Our cluster has four 
machines, hdp01, hdp02, hdp03, and hdp04.

The --table argument tells Sqoop which table to import. In our case, we are looking to 
import the weblogs table into HDFS. The --target-dir argument is passed the folder path 
in HDFS where the imported table will be stored:

hadoop fs -ls /data/weblogs/import

The output would be:

-rw-r--r--   1   hdp_usr hdp_grp    0      2012-06-08  23:47 /data/
weblogs/import/_SUCCESS

drwxr-xr-x-  -  hdp_usr  hdp_grp    0      2012-06-08  23:47 /data/
weblogs/import/_logs

-rw-r--r--  1  hdp_usr  hdp_grp     251131 2012-06-08  23:47 /data/
weblogs/import/part-m-00000
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By default, the imported data will be split on the primary key. If the table being imported  
does not have a primary key, the -m or --split-by arguments must be used to tell Sqoop 
how to split the data. In the preceding example, the -m argument was used. The -m argument 
controls the number of mappers that are used to import the data. Since -m was set to 1, a 
single mapper was used to import the data. Each mapper used will produce a part file.

This one line hides an incredible amount of complexity. Sqoop uses the metadata stored  
by the database to generate the DBWritable classes for each column. These classes are 
used by DBInputFormat, a Hadoop input format with the ability to read the results of 
arbitrary queries run against a database. In the preceding example, a MapReduce job is 
started using the DBInputFormat class to retrieve the contents from the weblogs table.  
The entire weblogs table is scanned and stored in /data/weblogs/import.

There's more...
There are many useful options for configuring how Sqoop imports data. Sqoop can import 
data as Avro or Sequence files using the --as-avrodatafile and --as-sequencefile 
arguments respectively. The data can be compressed while being imported as well using 
the -z or --compress arguments. The default codec is GZIP, but any Hadoop compression 
codec can be used by supplying the --compression-codec <CODEC> argument. See the 
Compressing data using LZO recipe in Chapter 2, HDFS. Another useful option is --direct. 
This argument instructs Sqoop to use native import/export tools if they are supported by the 
configured database. In the preceding example, if --direct was added as an argument, 
Sqoop would use mysqldump for fast exporting of the weblogs table. The --direct 
argument is so important that in the preceding example, a warning message was logged  
as follows:

WARN manager.MySQLManager: It looks like you are importing from mysql.

WARN manager.MySQLManager: This transfer can be faster! Use the --direct

WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.

See also
 f Exporting data from HDFS into MySQL using Sqoop
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Exporting data from HDFS into MySQL  
using Sqoop

Sqoop is an Apache project that is part of the broader Hadoop ecosphere. In many ways  
Sqoop is similar to distcp (See the Moving data efficiently between clusters using Distributed 
Copy recipe of this chapter). Both are built on top of MapReduce and take advantage of its 
parallelism and fault tolerance. Instead of moving data between clusters, Sqoop was designed 
to move data from and into relational databases using a JDBC driver to connect.

Its functionality is extensive. This recipe will show how to use Sqoop to export data from  
HDFS to MySQL using the weblog entries as an example.

Getting ready
This example uses Sqoop v1.3.0.

If you are using CDH3, you already have Sqoop installed. If you are not running CDH3 you 
can find instructions for your distro at https://ccp.cloudera.com/display/CDHDOC/
Sqoop+Installation.

This recipe assumes that you have a MySQL instance up and running that can reach  
your Hadoop cluster. The mysql.user table is configured to accept a user connecting 
from the machine where you will be running Sqoop. Visit http://dev.mysql.com/doc/
refman/5.5/en/installing.html for more information on installing and  
configuring MySQL.

The MySQL JDBC driver JAR file has been copied to $SQOOP_HOME/libs. The driver can  
be downloaded from http://dev.mysql.com/downloads/connector/j/.

Follow the Importing and exporting data into HDFS using the Hadoop shell commands  
recipe of this chapter to load the weblog_entires.txt file into HDFS.

How to do it...
Complete the following steps to transfer data from HDFS to a MySQL table:

1. Create a new database in the MySQL instance:
CREATE DATABASE logs;

https://ccp.cloudera.com/display/CDHDOC/Sqoop+Installation
http://dev.mysql.com/doc/refman/5.5/en/installing.html
http://dev.mysql.com/doc/refman/5.5/en/installing.html
http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/
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2. Create the weblogs_from_hdfs table:
USE logs;

CREATE TABLE weblogs_from_hdfs (

    md5             VARCHAR(32),

    url             VARCHAR(64),

    request_date    DATE,

    request_time    TIME,

    ip              VARCHAR(15)

);

3. Export the weblog_entries.txt file from HDFS to MySQL:

sqoop export -m 1 --connect jdbc:mysql://<HOST>:<PORT>/logs 
--username hdp_usr --password test1 --table weblogs_from_hdfs 
--export-dir /data/weblogs/05102012 --input-fields-terminated-by 
'\t' --mysql-delmiters

The output is as follows:

INFO mapreduce.ExportJobBase: Beginning export of weblogs_from_
hdfs

input.FileInputFormat: Total input paths to process : 1

input.FileInputFormat: Total input paths to process : 1

mapred.JobClient: Running job: job_201206222224_9010

INFO mapred.JobClient:   Map-Reduce Framework

INFO mapred.JobClient:     Map input records=3000

INFO mapred.JobClient:     Spilled Records=0

INFO mapred.JobClient:     Total committed heap usage 
(bytes)=85000192

INFO mapred.JobClient:     Map output records=3000

INFO mapred.JobClient:     SPLIT_RAW_BYTES=133

INFO mapreduce.ExportJobBase: Transferred 248.3086 KB in 12.2398 
seconds (20.287 KB/sec)

INFO mapreduce.ExportJobBase: Exported 3000 records.
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How it works...
Sqoop loads the JDBC driver defined in the --connect statement from $SQOOP_HOME/
libs, where $SQOOP_HOME is the full path to the location where Sqoop is installed. The 
--username and --password options are used to authenticate the user issuing the 
command against the MySQL instance. The mysql.user table must have an entry for the 
--username and the host of each node in the Hadoop cluster; or else Sqoop will throw an 
exception indicating that the host is not allowed to connect to the MySQL Server.

mysql> USE mysql;

mysql> select host, user from user;

+---------------+-----------+

| user          | host      |

+---------------+-----------+

| hdp_usr       | hdp01     |

| hdp_usr       | hdp02     |

| hdp_usr       | hdp03     |

| hdp_usr       | hdp04     |

| root          | 127.0.0.1 |

| root          | ::1       |

| root          | localhost |

+---------------+-----------+

7 rows in set (1.04 sec)

In this example, we connected to the MySQL server using hdp_usr. Our cluster has four 
machines, hdp01, hdp02, hdp03, and hdp04.

The --table argument identifies the MySQL table that will receive the data from HDFS. 
This table must be created before running the Sqoop export command. Sqoop uses the 
metadata of the table, the number of columns, and their types, to validate the data coming 
from the HDFS folder and to create INSERT statements. For example, the export job can be 
thought of as reading each line of the weblogs_entries.txt file in HDFS and producing 
the following output:

INSERT INTO weblogs_from_hdfs
VALUES('aabba15edcd0c8042a14bf216c5', '/jcwbtvnkkujo.html', '2012-05-
10', '21:25:44', '148.113.13.214');

INSERT INTO weblogs_from_hdfs
VALUES('e7d3f242f111c1b522137481d8508ab7', '/ckyhatbpxu.html', '2012-
05-10', '21:11:20', '4.175.198.160');
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INSERT INTO weblogs_from_hdfs
VALUES('b8bd62a5c4ede37b9e77893e043fc1', '/rr.html', '2012-05-10', 
'21:32:08', '24.146.153.181');
...

By default, Sqoop export creates INSERT statements. If the --update-key argument is 
specified, UPDATE statements will be created instead. If the preceding example had used  
the argument --update-key md5, the generated code would have run like the following:

UPDATE weblogs_from_hdfs SET url='/jcwbtvnkkujo.html', request_
date='2012-05-10'request_time='21:25:44'
ip='148.113.13.214'WHERE md5='aabba15edcd0c8042a14bf216c5'

UPDATE weblogs_from_hdfs SET url='/jcwbtvnkkujo.html', request_
date='2012-05-10'request_time='21:11:20' ip='4.175.198.160' WHERE  
md5='e7d3f242f111c1b522137481d8508ab7'

UPDATE weblogs_from_hdfs SET url='/jcwbtvnkkujo.html', request_
date='2012-05-10'request_time='21:32:08' ip='24.146.153.181' WHERE  
md5='b8bd62a5c4ede37b9e77893e043fc1'

In the case where the --update-key value is not found, setting the --update-mode  
to allowinsert will insert the row.

The -m argument sets the number of map jobs reading the file splits from HDFS. Each 
mapper will have its own connection to the MySQL Server. It will insert up to 100 records per 
statement. After it has completed 100 INSERT statements, that is 10,000 records in total, 
it will commit the current transaction. It is possible that a map task failure could cause data 
inconsistency resulting in possible insert collisions or duplicated data. These issues can be 
overcome with the use of the --staging-table argument. This will cause the job to insert 
into a staging table, and then in one transaction, move the data from the staging table to the 
table specified by the --table argument. The --staging-table argument must have the 
same format as --table. The --staging-table argument must be empty, or else the 
--clear-staging-table argument must be used.

See also
 f Importing data from MySQL into HDFS using Sqoop
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Configuring Sqoop for Microsoft SQL Server
This recipe shows how to configure Sqoop to connect with Microsoft SQL Server databases. 
This will allow data to be efficiently loaded from a Microsoft SQL Server database into HDFS.

Getting ready
This example uses Sqoop v1.3.0.

If you are using CDH3, you already have Sqoop installed. If you are not running CDH3, you 
can find instructions for your distro at https://ccp.cloudera.com/display/CDHDOC/
Sqoop+Installation.

This recipe assumes that you have an instance of SQL Server up and running that can 
connect to your Hadoop cluster.

How to do it...
Complete the following steps to configure Sqoop to connect with Microsoft SQL Server:

1. Download the Microsoft SQL Server JDBC Driver 3.0 from the following site  
http://download.microsoft.com/download/D/6/A/D6A241AC-433E-
4CD2-A1CE-50177E8428F0/1033/sqljdbc_3.0.1301.101_enu.tar.gz.

This download contains the SQL Server JDBC driver (sqljdbc4.jar). Sqoop 
connects to relational databases using JDBC drivers.

2. Uncompress and extract the TAR file:
gzip -d sqljdbc_3.0.1301.101_enu.tar.gz

tar -xvf sqljdbc_3.0.1301.101_enu.tar

This will result in a new folder being created, sqljdbc_3.0.

3. Copy sqljdbc4.jar to $SQOOP_HOME/lib:
cp sqljdbc_3.0/enu/sqljdbc4.jar $SQOOP_HOME/lib

Sqoop now has access to the sqljdbc4.jar file and will be able to use it to  
connect to a SQL Server instance.

https://ccp.cloudera.com/display/CDHDOC/Sqoop+Installation
https://ccp.cloudera.com/display/CDHDOC/Sqoop+Installation
http://download.microsoft.com/download/D/6/A/D6A241AC-433E-4CD2-A1CE-50177E8428F0/1033/sqljdbc_3.0.1301.101_enu.tar.gz
http://download.microsoft.com/download/D/6/A/D6A241AC-433E-4CD2-A1CE-50177E8428F0/1033/sqljdbc_3.0.1301.101_enu.tar.gz
http://download.microsoft.com/download/D/6/A/D6A241AC-433E-4CD2-A1CE-50177E8428F0/1033/sqljdbc_3.0.1301.101_enu.tar.gz
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4. Download the Microsoft SQL Server Connector for Apache Hadoop from the site 
http://download.microsoft.com/download/B/E/5/BE5EC4FD-9EDA-
4C3F-8B36-1C8AC4CE2CEF/sqoop-sqlserver-1.0.tar.gz.

5. Uncompress and extract the TAR file:
gzip -d sqoop-sqlserver-1.0.tar.gz

tar -xvf sqoop-sqlserver-1.0.tar

This will result in a new folder being created, sqoop-sqlserver-1.0.

6. Set the MSSQL_CONNECTOR_HOME environment variable:
export MSSQL_CONNECTOR_HOME=/path/to/sqoop-sqlserver-1.0

7. Run the installation script:
./install.sh

8. For importing and exporting data, see the Importing data from MySQL into HDFS 
using Sqoop and Exporting data from HDFS into MySQL using Sqoop recipes of this 
chapter. These recipes apply to SQL Server as well. The --connect argument must 
be changed to --connect jdbc:sqlserver://<HOST>:<PORT>.

How it works...
Sqoop communicates with databases using JDBC. After adding the sqljdbc4.jar file to 
the $SQOOP_HOME/lib folder, Sqoop will be able to connect to SQL Server instances using 
--connect jdbc:sqlserver://<HOST>:<PORT>. In order for SQL Server to have full 
compatibility with Sqoop, some configuration changes are necessary. The configurations  
are updated by running the install.sh script.

Exporting data from HDFS into MongoDB
This recipe will use the MongoOutputFormat class to load data from an HDFS instance  
into a MongoDB collection.

Getting ready
The easiest way to get started with the Mongo Hadoop Adaptor is to clone the Mongo-Hadoop 
project from GitHub and build the project configured for a specific version of Hadoop. A Git 
client must be installed to clone this project.

This recipe assumes that you are using the CDH3 distribution of Hadoop.

The official Git Client can be found at http://git-scm.com/downloads.

http://download.microsoft.com/download/B/E/5/BE5EC4FD-9EDA-4C3F-8B36-1C8AC4CE2CEF/sqoop-sqlserver-1.0.tar.gz
http://download.microsoft.com/download/B/E/5/BE5EC4FD-9EDA-4C3F-8B36-1C8AC4CE2CEF/sqoop-sqlserver-1.0.tar.gz
http://git-scm.com/downloads
http://windows.github.com/
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GitHub for Windows can be found at http://windows.github.com/.

GitHub for Mac can be found at http://mac.github.com/.

The Mongo Hadoop Adaptor can be found on GitHub at https://github.com/mongodb/
mongo-hadoop. This project needs to be built for a specific version of Hadoop. The resulting 
JAR file must be installed on each node in the $HADOOP_HOME/lib folder.

The Mongo Java Driver is required to be installed on each node in the $HADOOP_HOME/
lib folder. It can be found at https://github.com/mongodb/mongo-java-driver/
downloads.

How to do it...
Complete the following steps to copy data form HDFS into MongoDB:

1. Clone the mongo-hadoop repository with the following command line:
git clone https://github.com/mongodb/mongo-hadoop.git

2. Switch to the stable release 1.0 branch:
git checkout release-1.0

3. Set the Hadoop version which mongo-hadoop should target. In the folder 
 that mongo-hadoop was cloned to, open the build.sbt file with a text editor.  
Change the following line:
hadoopRelease in ThisBuild := "default"

to

hadoopRelease in ThisBuild := "cdh3"

4. Build mongo-hadoop:
./sbt package

This will create a file named mongo-hadoop-core_cdh3u3-1.0.0.jar in the 
core/target folder.

5. Download the MongoDB Java Driver Version 2.8.0 from https://github.com/
mongodb/mongo-java-driver/downloads.

6. Copy mongo-hadoop and the MongoDB Java Driver to $HADOOP_HOME/lib on  
each node:
cp mongo-hadoop-core_cdh3u3-1.0.0.jar mongo-2.8.0.jar $HADOOP_
HOME/lib

http://windows.github.com/
http://mac.github.com/
https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-java-driver/downloads
https://github.com/mongodb/mongo-java-driver/downloads
https://github.com/mongodb/mongo-java-driver/downloads
https://github.com/mongodb/mongo-java-driver/downloads
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7. Create a Java MapReduce program that will read the weblog_entries.txt file 
from HDFS and write them to MongoDB using the MongoOutputFormat class:
import java.io.*;

import org.apache.commons.logging.*;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.*;
import org.bson.*;
import org.bson.types.ObjectId;

import com.mongodb.hadoop.*;
import com.mongodb.hadoop.util.*;

public class ExportToMongoDBFromHDFS {

   private static final Log log =
LogFactory.getLog(ExportToMongoDBFromHDFS.class);

   public static class ReadWeblogs extends Mapper<LongWritable, 
Text, ObjectId, BSONObject>{
      
      public void map(Text key, Text value, Context context) 
throws IOException, InterruptedException{

         System.out.println("Key: " + key);
         System.out.println("Value: " + value);

         String[] fields = value.toString().split("\t");

         String md5 = fields[0];
         String url = fields[1];
         String date = fields[2];
         String time = fields[3];
         String ip = fields[4];

         BSONObject b = new BasicBSONObject();
         b.put("md5", md5);
         b.put("url", url);
         b.put("date", date);
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         b.put("time", time);
         b.put("ip", ip);

         context.write( new ObjectId(), b);
}
   }

   public static void main(String[] args) throws Exception{

      final Configuration conf = new Configuration();
MongoConfigUtil.setOutputURI(conf,"mongodb://<HOST>:<PORT>/test.
weblogs");

      System.out.println("Configuration: " + conf);

      final Job job = new Job(conf, "Export to Mongo");

      Path in = new Path("/data/weblogs/weblog_entries.txt");
      FileInputFormat.setInputPaths(job, in);

      job.setJarByClass(ExportToMongoDBFromHDFS.class);
      job.setMapperClass(ReadWeblogs.class);

      job.setOutputKeyClass(ObjectId.class);
      job.setOutputValueClass(BSONObject.class);

      job.setInputFormatClass(TextInputFormat.class);
      job.setOutputFormatClass(MongoOutputFormat.class);

      job.setNumReduceTasks(0);

      System.exit(job.waitForCompletion(true) ? 0 : 1 );

   }

}

8. Export as a runnable JAR file and run the job:
hadoop jar ExportToMongoDBFromHDFS.jar

9. Verify that the weblogs MongoDB collection was populated from the Mongo shell:

db.weblogs.find();
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How it works...
The Mongo Hadoop Adaptor provides a new Hadoop compatible filesystem implementation, 
MongoInputFormat, and MongoOutputFormat. These abstractions make working with 
MongoDB similar to working with any Hadoop compatible filesystem.

Importing data from MongoDB into HDFS
This recipe will use the MongoInputFormat class to load data from a MongoDB collection 
into HDFS.

Getting ready
The easiest way to get started with the Mongo Hadoop Adaptor is to clone the  
mongo-hadoop project from GitHub and build the project configured for a specific  
version of Hadoop. A Git client must be installed to clone this project.

This recipe assumes that you are using the CDH3 distribution of Hadoop.

The official Git Client can be found at http://git-scm.com/downloads.

GitHub for Windows can be found at http://windows.github.com/.

GitHub for Mac can be found at http://mac.github.com/.

The Mongo Hadoop Adaptor can be found on GitHub at https://github.com/mongodb/
mongo-hadoop. This project needs to be built for a specific version of Hadoop. The resulting 
JAR file must be installed on each node in the $HADOOP_HOME/lib folder.

The Mongo Java Driver is required to be installed on each node in the $HADOOP_HOME/
lib folder. It can be found at https://github.com/mongodb/mongo-java-driver/
downloads.

How to do it...
Complete the following steps to copy data from MongoDB into HDFS:

1. Clone the mongo-hadoop repository:
git clone https://github.com/mongodb/mongo-hadoop.git

2. Switch to the stable release 1.0 branch:
git checkout release-1.0

http://git-scm.com/downloads
http://windows.github.com/
http://mac.github.com/
https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-java-driver/downloads
https://github.com/mongodb/mongo-java-driver/downloads
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3. Set the Hadoop version which mongo-hadoop should target. In the folder  
that mongo-hadoop was cloned to, open the build.sbt file with a text editor. 
Change the following line:
hadoopRelease in ThisBuild := "default"

to

hadoopRelease in ThisBuild := "cdh3"

4. Build mongo-hadoop:
./sbt package

This will create a file named mongo-hadoop-core_cdh3u3-1.0.0.jar in  
the core/target folder.

5. Download the Mongo Java Driver Version 2.8.0 from https://github.com/
mongodb/mongo-java-driver/downloads.

6. Copy mongo-hadoop and the MongoDB Java Driver to $HADOOP_HOME/lib on  
each node:
cp mongo-hadoop-core_cdh3u3-1.0.0.jar mongo-2.8.0.jar $HADOOP_
HOME/lib

7. Create a Java MapReduce program that will read the weblogs file from a MongoDB 
collection and write them to HDFS:
import java.io.*;

import org.apache.commons.logging.*;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.lib.output.*;
import org.apache.hadoop.mapreduce.*;
import org.bson.*;

import com.mongodb.hadoop.*;
import com.mongodb.hadoop.util.*;

public class ImportWeblogsFromMongo {

   private static final Log log = LogFactory.
getLog(ImportWeblogsFromMongo.class);

   public static class ReadWeblogsFromMongo extends Mapper<Object, 
BSONObject, Text, Text>{

https://github.com/mongodb/mongo-java-driver/downloads
https://github.com/mongodb/mongo-java-driver/downloads
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      public void map(Object key, BSONObject value, Context 
context) throws IOException, InterruptedException{

         System.out.println("Key: " + key);
         System.out.println("Value: " + value);

         String md5 = value.get("md5").toString();
         String url = value.get("url").toString();
         String date = value.get("date").toString();
         String time = value.get("time").toString();
         String ip = value.get("ip").toString();
         String output = "\t" + url + "\t" + date + "\t" + 
                         time + "\t" + ip;
         context.write( new Text(md5), new Text(output));
      }
   }

   public static void main(String[] args) throws Exception{

      final Configuration conf = new Configuration();
      MongoConfigUtil.setInputURI(conf,
"mongodb://<HOST>:<PORT>/test.weblogs");
      MongoConfigUtil.setCreateInputSplits(conf, false);
      System.out.println("Configuration: " + conf);

      final Job job = new Job(conf, "Mongo Import");

      Path out = new Path("/data/weblogs/mongo_import");
      FileOutputFormat.setOutputPath(job, out);
      job.setJarByClass(ImportWeblogsFromMongo.class);
      job.setMapperClass(ReadWeblogsFromMongo.class);
       job.setOutputKeyClass(Text.class);
      job.setOutputValueClass(Text.class);

      job.setInputFormatClass(MongoInputFormat.class);
      job.setOutputFormatClass(TextOutputFormat.class);

      job.setNumReduceTasks(0);

      System.exit(job.waitForCompletion(true) ? 0 : 1 );
      
   }

}
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This map-only job uses several classes provided by the Mongo Hadoop Adaptor. Data 
that is read in from HDFS is converted to a BSONObject. This class represents a 
binary format JSON value. MongoDB uses these BSON objects to efficiently serialize, 
transfer, and store data. The Mongo Hadoop Adaptor also provides a convenient 
MongoConfigUtil class to help set up the job to connect to MongoDB as if it  
were a filesystem.

8. Export as runnable JAR file and run the job:
hadoop jar ImportWeblogsFromMongo.jar

9. Verify that the weblogs were imported from MongoDB:

hadoop fs -ls /data/weblogs/mongo_import

How it works...
The Mongo Hadoop Adaptor provides a new Hadoop compatible filesystem implementation, 
MongoInputFormat and MongoOutputFormat. These abstractions make working with 
MongoDB similar to working with any Hadoop compatible filesystem.

Exporting data from HDFS into MongoDB 
using Pig

MongoDB is a NoSQL database that was designed for storing and retrieving large amounts of 
data. MongoDB is often used for user-facing data. This data must be cleaned and formatted 
before it can be made available. Apache Pig was designed, in part, with this kind of work in 
mind. The MongoStorage class makes it extremely convenient to bulk process the data 
in HDFS using Pig and then load this data directly into MongoDB. This recipe will use the 
MongoStorage class to store data from HDFS into a MongoDB collection.

Getting ready
The easiest way to get started with the Mongo Hadoop Adaptor is to clone the  
mongo-hadoop project from GitHub and build the project configured for a specific version  
of Hadoop. A Git client must be installed to clone this project.

This recipe assumes that you are using the CDH3 distribution of Hadoop.

The official Git Client can be found at http://git-scm.com/downloads.

GitHub for Windows can be found at http://windows.github.com/.

GitHub for Mac can be found at http://mac.github.com/.

http://git-scm.com/downloads
http://windows.github.com/
http://mac.github.com/
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The Mongo Hadoop Adaptor can be found on GitHub at https://github.com/mongodb/
mongo-hadoop. This project needs to be built for a specific version of Hadoop. The resulting 
JAR file must be installed on each node in the $HADOOP_HOME/lib folder.

The Mongo Java Driver is required to be installed on each node in the $HADOOP_HOME/
lib folder. It can be found at https://github.com/mongodb/mongo-java-driver/
downloads.

How to do it...
Complete the following steps to copy data from HDFS to MongoDB:

1. Clone the mongo-hadoop repository:
git clone https://github.com/mongodb/mongo-hadoop.git

2. Switch to the stable release 1.0 branch:
git checkout release-1.0

3. Set the Hadoop version which mongo-hadoop should target. In the folder  
that mongo-hadoop was cloned to, open the build.sbt file with a text editor. 
Change the following line:
hadoopRelease in ThisBuild := "default"

to

hadoopRelease in ThisBuild := "cdh3"

4. Build mongo-hadoop:
./sbt package

This will create a file named mongo-hadoop-core_cdh3u3-1.0.0.jar in  
the core/target folder. It will also create a file named mongo-hadoop-pig_
cdh3u3-1.0.0.jar in the pig/target folder.

5. Download the Mongo Java Driver Version 2.8.0 from: https://github.com/
mongodb/mongo-java-driver/downloads.

6. Copy mongo-hadoop-core, mongo-hadoop-pig, and the MongoDB Java Driver  
to $HADOOP_HOME/lib on each node:
cp mongo-hadoop-core_cdh3u3-1.0.0.jar mongo-2.8.0.jar $HADOOP_
HOME/lib

7. Create a Pig script that will read the weblogs from HDFS and store them into a 
MongoDB Collection:

https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-java-driver/downloads
https://github.com/mongodb/mongo-java-driver/downloads
https://github.com/mongodb/mongo-java-driver/downloads
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register /path/to/mongo-hadoop/mongo-2.8.0.jar

register /path/to/mongo-hadoop/core/target/mongo-hadoop-core-
1.0.0.jar

register /path/to/mongo-hadoop/pig/target/mongo-hadoop-pig-
1.0.0.jar

define MongoStorage com.mongodb.hadoop.pig.MongoStorage();

weblogs = load '/data/weblogs/weblog_entries.txt' as 

                (md5:chararray, url:chararry, date:chararray, 
time:chararray, ip:chararray);

store weblogs into 'mongodb://<HOST>:<PORT>/test.weblogs_from_pig' 
using MongoStorage();

How it works...
The Mongo Hadoop Adaptor provides a new Hadoop compatible filesystem implementation, 
MongoInputFormat and MongoOutputFormat. These abstractions make working with 
MongoDB similar to working with any Hadoop compatible filesystem. MongoStorage  
converts Pig types to the BasicDBObjectBuilder object type, which is used by MongoDB.

Using HDFS in a Greenplum external table
Greenplum is a parallel database that distributes data and queries to one or more PostgreSQL 
instances. It complements Hadoop by providing real-time or near real-time access to large 
amounts of data. It supports using HDFS files as external tables. External tables are a good 
solution for working with data that lives outside of the Greenplum cluster. Since data in 
external tables must first travel over the network, they should be infrequently used in queries 
with other data that lives inside of the Greenplum cluster. This recipe will cover creating  
read-only and read/write external tables.

Getting ready
This recipe assumes that you are using the CDH3 distribution of Hadoop.

Run an instance of Greenplum that must be able to reach the Hadoop cluster found  
at http://www.greenplum.com/products/greenplum-database.

http://www.greenplum.com/products/greenplum-database
http://www.greenplum.com/products/greenplum-database
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Configure Greenplum with the following:

 f gp_hadoop_target_version set to cdh3u2
 f gp_hadoop_home set to the full path of $HADOOP_HOME

Java 1.6 or above must be installed on each node in the Greenplum cluster.

How to do it...
Create an external table from the weblogs file in HDFS:

CREATE EXTERNAL TABLE weblogs(
    md5             text,
    url             text,
    request_date    date,
    request_time    time,
    ip              inet
)
LOCATION ('gphdfs://<NAMENODE_HOST>:<NAMENODE_PORT>/data/weblogs/
weblog_entries.txt')
FORMAT 'TEXT' (DELIMITER '\t');

How it works...
Greenplum has native support for loading data from HDFS in parallel. When a query is run 
against the weblog_entries.txt table, the weblog_entries.txt file is loaded into 
a temporary Greenplum table. The query then executes against this table. After the query 
finishes the table is discarded.

There's more...
Greenplum external tables also support writing of data. This requires the WRITABLE keyword 
while creating the table:

CREATE WRITABLE EXTERNAL TABLE weblogs(
    md5             text,
    url             text,
    request_date    date,
    request_time    time,
    ip              inet
)
LOCATION ('gphdfs://<NAMENODE_HOST>:<NAMENODE_PORT>/data/weblogs/
weblog_entries.txt')
FORMAT 'TEXT' (DELIMITER '\t');

More information can be found in the Greenplum administrator's handbook at http://
media.gpadmin.me/wp-content/uploads/2011/05/GP-4100-AdminGuide.pdf

http://media.gpadmin.me/wp-content/uploads/2011/05/GP-4100-AdminGuide.pdf
http://media.gpadmin.me/wp-content/uploads/2011/05/GP-4100-AdminGuide.pdf
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Using Flume to load data into HDFS
Apache Flume is a project in the Hadoop community, consisting of related projects designed 
to efficiently and reliably load streaming data from many different sources into HDFS. A 
common use case for Flume is loading the weblog data from several sources into HDFS.  
This recipe will cover loading the weblog entries into HDFS using Flume.

Getting ready
This recipe assumes that you have Flume installed and configured.

Flume can be downloaded from its Apache page at http://incubator.apache.org/
flume/.

If you are using CDH3, Flume Version 0.9.4+25.43 is installed by default.

How to do it...
Complete the following steps to load the weblogs data into HDFS:

1. Use the dump command to test that Flume is configured properly:
flume dump 'text("/path/to/weblog_entries.txt")'

2. Use the Flume shell to execute a configuration:

flume shell -c<MASTER_HOST>:<MASTER_PORT> -e 'exec config text("/
path/to/weblog_entries.txt") | collectorSink("hdfs://<NAMENODE_
HOST>:<NAMENODE_PORT>/data/weblogs/flume")'

How it works...
Flume uses Sources and Sinks abstractions and a pipe-like data flow to link them together.  
In the example, text is a source which takes a path to a file as an argument and sends  
the contents of that file to the configured sink. The dump command uses the console as a 
sink. With this configuration the weblog_entries.txt file is read by text and written to  
the console.

In step 2, the Flume shell is used to configure and execute a job. The -c argument tells Flume 
where to connect to the Flume Master node. Flume will execute the command after the -e 
argument. As mentioned previously, text is a source which reads all of the contents of the 
file it is passed. collectorSink is a sink which can be passed a local filesystem path or a 
path in HDFS. In the preceding example, a HDFS path is given. The result of this command  
will be to load the weblog_entries.txt into HDFS.

http://incubator.apache.org/flume/
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There's more...
Flume comes with several predefined Sources and Sinks. A few of the many basic  
Sources include:

 f null: This opens, closes, and returns null

 f stdin: This reads from stdin

 f rpcSource: This reads either Thrift or Avro RPC

 f text: This reads the contents of a file

 f tail: This reads a file and stays open, reading data that is appended to the file

A few of the many basic Sinks include:

 f null: This drops the events

 f collectorSink: This writes to the local filesystem or HDFS

 f console: This writes to the console

 f formatDfs: This writes to HDFS in a specified format Sequence File, Avro, Thrift,  
and so on

 f rpcSink: This writes either Thrift or Avro RPC



2
HDFS

In this chapter we will cover:

 f Reading and writing data to HDFS

 f Compressing data using LZO

 f Reading and writing data to SequenceFiles

 f Using Apache Avro to serialize data

 f Using Apache Thrift to serialize data

 f Using Protocol Buffers to serialize data

 f Setting the replication factor for HDFS

 f Setting the block size for HDFS

Introduction
Hadoop Distributed File System (HDFS) is a fault-tolerant distributed filesystem designed 
to run on "off-the-shelf" hardware. It has been optimized for streaming reads on large files 
whereas I/O throughput is favored over low latency. In addition, HDFS uses a simple model  
for data consistency where files can only be written to once.

HDFS assumes disk failure as an eventuality and uses a concept called block replication  
to replicate data across nodes in the cluster. HDFS uses a much larger block size when 
compared to desktop filesystems. For example, the default block size for HDFS is 64 MB. 
Once a file has been placed into HDFS, the file is divided into one or more data blocks and 
is distributed to nodes in the cluster. In addition, copies of the data blocks are made, which 
again are distributed to nodes in the cluster to ensure high data availability in case of a 
disk failure. The number of copies HDFS makes of each data block is determined by the 
replication factor setting. The default replication factor is 3, meaning three replicas of  
a data block will be distributed across the nodes in the cluster.
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Finally, applications using HDFS can achieve high throughput because the Hadoop framework 
was designed to move computation to the data. In other words, applications can run on the 
nodes where the data resides instead of moving the data to the application. This concept is 
known as data locality.

HDFS consists of three services:

HDFS Application Purpose
NameNode This maintains a catalog of all block locations in the cluster
Secondary NameNode This periodically synchronizes with the NameNode block 

index. During the synchronizing process, the Secondary 
NameNode retrieves the current NameNode image and edit 
logs, merges them together, and then sends the merged 
image back to the NameNode. The Secondary NameNode 
is not a "hot" backup of the NameNode. It cannot be used in 
the event of a NameNode failure.

DataNode This manages the data blocks it receives from the 
NameNode. It is unaware of any other DataNodes in the 
cluster and only communicates with the NameNode.

This chapter will use the FileSystem API, MapReduce, and advanced serialization libraries to 
efficiently write and store data in HDFS.

Version 0.20.x does not support append operations

Reading and writing data to HDFS
There are many ways to read data from  and write data to HDFS. We will start by using the 
FileSystem API to create and write to a file in HDFS, followed by an application to read a file 
from HDFS and write it back to the local filesystem.

Getting ready
You will need to download the weblog_entries.txt dataset from the Packt website, 
http://www.packtpub.com/support.

How to do it...
Carry out the following steps to read and write data to HDFS:
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1. Once you have downloaded the test dataset, we can write an application to read a  
file from the local filesystem and write the contents to HDFS.
public class HdfsWriter extends Configured implements Tool {
        
    public int run(String[] args) throws Exception {
        
        String localInputPath = args[0];
        Path outputPath = new Path(args[1]);
        Configuration conf = getConf();
        FileSystem fs = FileSystem.get(conf);
        OutputStream os = fs.create(outputPath);
        InputStream is = new BufferedInputStream(
           new FileInputStream(localInputPath));
        IOUtils.copyBytes(is, os, conf);
        return 0;
    }
    
    public static void main(String[] args) throws Exception {
        int returnCode = ToolRunner.run(
           new HdfsWriter(), args);
        System.exit(returnCode);
    }
}

2. Next, we write an application to read the file we just created in HDFS and write its 
contents back to the local filesystem.

public class HdfsReader extends Configured implements Tool {
    
    public int run(String[] args) throws Exception {
        
        Path inputPath = new Path(args[0]);
        String localOutputPath = args[1];
        Configuration conf = getConf();
        FileSystem fs = FileSystem.get(conf);
        InputStream is = fs.open(inputPath);
        OutputStream os = new BufferedOutputStream(
            new FileOutputStream(localOutputPath));
        IOUtils.copyBytes(is, os, conf);
        return 0;
    }
    
    public static void main(String[] args) throws Exception {
        int returnCode = ToolRunner.run(
           new HdfsReader(), args);
        System.exit(returnCode);
    }
}
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How it works...
FileSystem is an abstract class that represents a generic filesystem. Most Hadoop 
filesystem implementations can be accessed and manipulated through the FileSystem 
object. To create an instance of the Hadoop Distributed File System, you call the method 
FileSystem.get(). The FileSystem.get() method will look at the URI assigned to 
the fs.default.name parameter of the Hadoop configuration files on your classpath 
and choose the correct implementation of the FileSystem class to instantiate. The fs.
default.name parameter of HDFS has the value hdfs://.

Once an instance of the FileSystem class has been created, the HdfsWriter class calls 
the create() method to create a file (or overwrite if it already exists) in HDFS. The create() 
method returns an OutputStream object, which can be manipulated using normal Java I/O 
methods. Similarly, HdfsReader calls the method open() to open a file in HDFS, which  
returns an InputStream object that can be used to read the contents of the file.

There's more...
The FileSystem API is extensive. To demonstrate some of the other methods available  
in the API, we can add some error checking to the HdfsWriter and HdfsReader classes  
we created.

To check whether the file exists before we call create(), use:

boolean exists = fs.exists(inputPath);

To check whether the path is a file, use:

boolean isFile = fs.isFile(inputPath);

To rename a file that already exists, use:

boolean renamed = fs.rename(inputPath, new Path("old_file.txt"));

Compressing data using LZO
Hadoop supports a number of compression algorithms, including:

 f bzip2

 f gzip

 f DEFLATE

Hadoop provides Java implementations of these algorithms, and therefore, files can be  
easily compressed/decompressed using the FileSystem API or MapReduce input and 
output formats.
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However, there is a drawback to storing data in HDFS using the compression formats listed 
previously. These formats are not splittable. Meaning, once a file is compressed using any 
of the codecs that Hadoop provides, the file cannot be decompressed without the whole file 
being read.

To understand why this is a drawback, you must first understand how Hadoop MapReduce 
determines the number of mappers to launch for a given task. The number of mappers 
launched is roughly equal to the input size divided by dfs.block.size (the default block 
size is 64 MB). The blocks of work that each mapper will receive are called input splits. For 
example, if the input to a MapReduce job was an uncompressed file that was 128 MB, this 
would probably result in two mappers being launched (128 MB/64 MB).

Since files compressed using the bzip2, gzip, and DEFLATE codecs cannot be split, the whole 
file must be given as a single input split to the mapper. Using the previous example, if the 
input to a MapReduce job was a gzip compressed file that was 128 MB, the MapReduce 
framework would only launch one mapper.

Now, where does LZO fit in to all of this? Well, the LZO algorithm was designed to have  
fast decompression speeds while having a similar compression speed as compared to 
DEFLATE. In addition, thanks to the hard work of the Hadoop community, LZO compressed 
files are splittable.

bzip2 is splittable as of Hadoop Version 0.21.0; however, the algorithm 
does have some performance limitations and should be investigated 
thoroughly before being used in a production environment.

Getting ready
You will need to download the LZO codec implementation for Hadoop from https://
github.com/kevinweil/hadoop-lzo.

How to do it...
Perform the following steps to set up LZO and then compress and index a text file:

1. First, install the lzo and lzo-devel packages.

On Red Hat Linux, use:
# yum install liblzo-devel

On Ubuntu, use:

# apt-get install liblzo2-devel

https://github.com/kevinweil/hadoop-lzo
https://github.com/kevinweil/hadoop-lzo
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2. Navigate to the directory where you extracted the hadoop-lzo source, and build  
the project.
# cd kevinweil-hadoop-lzo-6bb1b7f/

# export JAVA_HOME=/path/to/jdk/ # ./setup.sh

3. If the build was successful, you should see:
BUILD SUCCESSFUL

4. Copy the build JAR files to the Hadoop lib folder on your cluster.
# cp build/hadoop-lzo*.jar /path/to/hadoop/lib/

5. Copy the native libraries to the Hadoop native lib folder on your cluster.
# tar -cBf - -C build/hadoop-lzo-0.4.15/lib/native/ . | tar -xBvf 
- -C /path/to/hadoop/lib/native

6. Next, update core-site.xml to use the LZO codec classes.
<property>
<name>io.compression.codecs</name>
<value>org.apache.hadoop.io.compress.GzipCodec,
            org.apache.hadoop.io.compress.DefaultCodec,
org.apache.hadoop.io.compress.BZip2Codec,
com.hadoop.compression.lzo.LzoCodec,
com.hadoop.compression.lzo.LzopCodec
  </value>
</property>
<property>
  <name>io.compression.codec.lzo.class</name>
  <value>com.hadoop.compression.lzo.LzoCodec</value>
</property>

7. Finally, update the following environment variables in your hadoop-env.sh script:
export HADOOP_CLASSPATH=/path/to/hadoop/lib/hadoop-lzo-X.X.XX.jar

export JAVA_LIBRARY_PATH=/path/to/hadoop/lib/native/hadoop-lzo-
native-lib:/path/to/hadoop/lib/native/other-native-libs

Now test the installation of the LZO library.

8. Compress the test dataset:
$ lzop weblog_entries.txt
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9. Put the compressed weblog_entries.txt.lzo file into HDFS:
$ hadoop fs –put weblog_entries.txt.lzo /test/weblog_entries.txt.
lzo

10. Run the MapReduce LZO indexer to index the weblog_entries.txt.lzo file:

$ hadoop jar /usr/lib/hadoop/lib/hadoop-lzo-0.4.15.jar com.hadoop.
compression.lzo.DistributedLzoIndexer /test/weblog_entries.txt.lzo

You should now see two files in the /test folder

$ hadoop fs –ls /test

$ /test/weblog_entries.txt.lzo

$ /test/weblog_entries.txt.lzo.index

How it works...
This recipe involved a lot of steps. After we moved the LZO JAR files and native libraries into 
place, we updated the io.compression.codecs property in core-site.xml. Both HDFS 
and Hadoop MapReduce share this configuration file, and the value of the io.compression.
codecs property will be used to determine which codecs are available to the system.

Finally, we ran DistributedLzoIndexer. This is a MapReduce application that will read 
one or more LZO compressed files and index the LZO block boundaries of each file. Once  
this application has been run on an LZO file, the LZO file can be split and sent to multiple 
mappers by using the included input format LzoTextInputFormat.

There's more...
In addition to DistributedLzoIndexer, the Hadoop LZO library also includes a class 
named LzoIndexer. LzoIndexer launches a standalone application to index LZO files  
in HDFS. To index the weblog_entries.txt.lzo in HDFS, run the following command:

$ hadoop jar /usr/lib/hadoop/lib/hadoop-lzo-0.4.15.jar com.hadoop.
compression.lzo.LzoIndexer /test/weblog_entries.txt.lzo

See also
 f Using Apache Thrift to serialize data

 f Using Protocol Buffers to serialize data
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Reading and writing data to SequenceFiles
The SequenceFile format is a flexible format included with the Hadoop distribution.  
It is capable of storing both text and binary data. SequenceFiles store data as binary  
key-value pairs. The binary pairs are then grouped together into blocks. This format  
supports compressing the value portion of a record or an entire block of key-value pairs. 
SequenceFiles are splittable even when using a compression codec that is not normally 
splittable, such as GzipCodec. SequenceFiles are able to do this because individual  
values (or blocks) are compressed, not the entire SequenceFile.

This recipe will demonstrate how to write and read to SequenceFiles.

Getting ready
You will need to download the weblog_entries.txt dataset from the Packt website, 
http://www.packtpub.com/support. Also, weblog_entries.txt should be  
available in HDFS. You can place the weblog_entries.txt file in HDFS using the  
Hadoop FS shell as follows:

$ hadoop fs –put /path/on/local/filesystem/weblog_entries.txt /path/in/
hdfs

How to do it...
1. Once you have downloaded the test dataset, we can write an application to read  

a plain text file from HDFS and write the contents to a SequenceFile in HDFS  
using MapReduce.
public class SequenceWriter extends Configured implements Tool {

    public int run(String[] args) throws Exception {
        
        Path inputPath = new Path(args[0]);
        Path outputPath = new Path(args[1]);
        
        Configuration conf = getConf();
        Job weblogJob = new Job(conf);
        weblogJob.setJobName("Sequence File Writer");
        weblogJob.setJarByClass(getClass());
        weblogJob.setNumReduceTasks(0);
        weblogJob.setMapperClass(IdentityMapper.class);    
        weblogJob.setMapOutputKeyClass(LongWritable.class);
        weblogJob.setMapOutputValueClass(Text.class);
        weblogJob.setOutputKeyClass(LongWritable.class);
        weblogJob.setOutputValueClass(Text.class);
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        weblogJob.setInputFormatClass(TextInputFormat.class);
        weblogJob.setOutputFormatClass(
SequenceFileOutputFormat.class);
        
        FileInputFormat.setInputPaths(weblogJob, inputPath);
        SequenceFileOutputFormat.setOutputPath(
weblogJob, outputPath);
        
       
        if(weblogJob.waitForCompletion(true)) {
            return 0;
        }
        return 1;
    }
    
    public static void main(String[] args) throws Exception {
        int returnCode = ToolRunner.run(
new SequenceWriter(), args);
        System.exit(returnCode);
    }
}

2. Now, use the MapReduce job to read a SequenceFile from HDFS and transform it 
back to normal text:

public class SequenceReader extends Configured implements Tool {
    
    public int run(String[] args) throws Exception {
        
        Path inputPath = new Path(args[0]);
        Path outputPath = new Path(args[1]);
        
        Configuration conf = getConf();
        Job weblogJob = new Job(conf);
        weblogJob.setJobName("Sequence File Reader");
        weblogJob.setJarByClass(getClass());
        weblogJob.setNumReduceTasks(0);
        weblogJob.setMapperClass(IdentityMapper.class);  
        weblogJob.setMapOutputKeyClass(LongWritable.class);
        weblogJob.setMapOutputValueClass(Text.class);
        weblogJob.setOutputKeyClass(LongWritable.class);
        weblogJob.setOutputValueClass(Text.class);
        weblogJob.setInputFormatClass(
SequenceFileInputFormat.class);
        weblogJob.setOutputFormatClass(
TextOutputFormat.class);
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        SequenceFileInputFormat.addInputPath(
weblogJob, inputPath);
        FileOutputFormat.setOutputPath(
weblogJob, outputPath);
        
        if(weblogJob.waitForCompletion(true)) {
            return 0;
        }
        return 1;
    }
    
    public static void main(String[] args) throws Exception {
        int returnCode = ToolRunner.run(
new SequenceReader(), args);
        System.exit(returnCode);
    }
}

How it works...
MapReduce is an efficient way to transform data in HDFS. These two MapReduce jobs are 
very simple to code and are capable of transforming data using the distributed processing 
power of the cluster.

First, both MapReduce jobs are "map-only" jobs. This means that Hadoop will launch only 
mappers to process the test data. This is achieved by setting the number of reducers to 0,  
as shown in the following line of code:

weblogJob.setNumReduceTasks(0);

Next, we want the sequence writer job to read text input and save its output as a 
SequenceFile. To do this, the SequenceWriter class sets the input format class to 
TextInputFormat.class, as shown in the following line of code:

weblogJob.setInputFormatClass(TextInputFormat.class);

And we also set the output format class to SequenceFileInputFormat.class, as  
shown in the following lines of code:

weblogJob.setOutputFormatClass(
SequenceFileOutputFormat.class);

For the next application, we wanted to read a sequence file and write a normal text file.  
To do this, we reversed the input and output formats we used for the sequence writer job.
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In the sequence reader job, set the input format to read SequenceFiles.

weblogJob.setInputFormatClass(
SequenceFileInputFormat.class);

Set the output format to plain text.

weblogJob.setOutputFormatClass(
TextOutputFormat.class);

There's more...
SequenceFiles have three compression options:

 f Uncompressed: Key-value pairs are stored uncompressed

 f Record compression: The value emitted from a mapper or reducer is compressed

 f Block compression: An entire block of key-value pairs is compressed

You can compress SequenceFiles using the following methods when you set up your job:

SequenceFileOutputFormat.setOutputCompression(job, true);

Next, set the compression option you want to use; the following code sets the record 
compression option:

SequenceFileOutputFormat.setOutputCompressionType(weblogJob, 
SequenceFile.CompressionType.RECORD);

Or set the block compression option:

SequenceFileOutputFormat.setOutputCompressionType(weblogJob, 
SequenceFile.CompressionType.BLOCK);

Finally, choose a compression codec class, for example gzip:

SequenceFileOutputFormat.setOutputCompressorClass(weblogJob, 
GzipCodec.class);

See also
In the following recipes, we will continue to explore different data serialization libraries  
and formats:

 f Using Apache Avro to serialize data

 f Using Apache Thrift to serialize data

 f Using Protocol Buffers to serialize data
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Using Apache Avro to serialize data
The description from the Apache Avro site defines Avro as a "data serialization system". 
Apache Avro supports a language-independent file format and includes serialization and  
RPC mechanisms. One of the neat features of Avro is that you do not need to compile any  
type of interface or protocol definition files in order to use the serialization features of  
the framework.

In this recipe, we will use Avro to serialize and write Java objects to a file in HDFS  
using MapReduce.

Getting ready
You will need to download/compile/install the following:

 f Version 1.5.4 of the avro and the avro-mapred JAR files, from  
http://avro.apache.org

 f The test data file weblog_entries.txt, from  
http://www.packtpub.com/support

How to do it...
1. The following is a Java class that represents a row from the weblog_entries.txt 

dataset:
public class WeblogRecord {
    private String cookie;
    private String page;
    private Date date;
    private String ip;
    

    public WeblogRecord() {
        
    }
    public WeblogRecord(String cookie, String page, Date date, 
String ip) {
        this.cookie = cookie;
        this.page = page;
        this.date = date;
        this.ip = ip;
    }
   //getters and setters 

    

    @Override
    public String toString() {
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        return cookie + "\t" + page + "\t" + date.toString() + 
"\t" + ip;
    }
    
}

2. This will be a map-only job, like the job that was created to generate and read 
SequenceFiles. However, instead of using IdentityMapper, we will write a 
mapper that reads a row from weblog_entries.txt and creates an instance of 
WeblogRecord.
public class WeblogMapper extends MapReduceBase implements 
Mapper<LongWritable, Text, AvroWrapper, NullWritable> {
    

    private AvroWrapper<WeblogRecord> outputRecord = new 
AvroWrapper<WeblogRecord>();

    private WeblogRecord weblogRecord = new WeblogRecord();

    SimpleDateFormat dateFormatter = new SimpleDateFormat("yyyy-
MM-dd:HH:mm:ss");

    public void map(LongWritable key, Text value, 
OutputCollector<AvroWrapper, NullWritable> oc, Reporter rprtr) 
throws IOException {

        String[] tokens = value.toString().split("\t");
        String cookie = tokens[0];
        String page = tokens[1];
        String date = tokens[2];
        String time = tokens[3];
        String formattedDate = date + ":" + time;
        Date timestamp = null;
        try {
            timestamp = dateFormatter.parse(formattedDate);
        } catch(ParseException ex) {
            // ignore records with invalid dates
            return;
        }
        String ip = tokens[4];
        
        weblogRecord.setCookie(cookie);
        weblogRecord.setDate(timestamp);
        weblogRecord.setIp(ip);
        weblogRecord.setPage(page);
        outputRecord.datum(weblogRecord);
        oc.collect(outputRecord, NullWritable.get());
    }
    

}
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3. Now, use the MapReduce job to read a text file, and then serialize and persist the 
WeblogRecord object:

public class AvroWriter extends Configured implements Tool {

    public int run(String[] args) throws Exception {

        Path inputPath = new Path(args[0]);
        Path outputPath = new Path(args[1]);

        Schema schema = ReflectData.get().getSchema(WeblogRecord.
class);

        Configuration conf = getConf();
        JobConf weblogJob = new JobConf(conf, getClass());
        weblogJob.setJobName("Avro Writer");
        weblogJob.setNumReduceTasks(0);
        weblogJob.setMapperClass(WeblogMapper.class);
        weblogJob.setMapOutputKeyClass(AvroWrapper.class);
        weblogJob.setMapOutputValueClass(NullWritable.class);
        weblogJob.setInputFormat(TextInputFormat.class);
        AvroJob.setOutputSchema(weblogJob, schema);
        FileInputFormat.setInputPaths(weblogJob, inputPath);
        FileOutputFormat.setOutputPath(weblogJob, outputPath);
        
        RunningJob job = JobClient.runJob(weblogJob);
        if(job.isSuccessful()) {
            return 0;
        }
        return 1;
    }

    public static void main(String[] args) throws Exception {
        int returnCode = ToolRunner.run(new AvroWriter(), args);
        System.exit(returnCode);
    }
}

How it works...
The AvroWriter MapReduce job reads a plain text file and serializes the WeblogRecord 
class into an Avro file. The first step is to set up a MapReduce job to read the text file and  
write the output file using the Avro file format.
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Set the input format to read a text file:

weblogJob.setInputFormat(TextInputFormat.class);

Build an Avro schema based on the WeblogRecord class, and then set the output schema:

Schema schema = ReflectData.get().getSchema(WeblogRecord.class);
AvroJob.setOutputSchema(weblogJob, schema);

Next, we use the old Hadoop MapReduce API to write the mapper and emit the 
WeblogRecord object by using the AvroWrapper class.

Members emitted of the WeblogMapper class are:

private AvroWrapper<WeblogRecord> outputRecord = new 
AvroWrapper<WeblogRecord>();
private WeblogRecord weblogRecord = new WeblogRecord();

Data emitted from the WeblogMapper map() method are:

outputRecord.datum(weblogRecord);
oc.collect(outputRecord, NullWritable.get());

The output of this map-only job is stored in the Avro file format.

There's more...
To read the Avro file format produced by the AvroWriter job, we just need to change  
the input format and the mapper class. First, set the input format and the input schema.

JobConf weblogJob = new JobConf(conf, getClass());
Schema schema = ReflectData.get().getSchema(WeblogRecord.class);
AvroJob.setReflect(weblogJob);

Next, create a mapper class with the following definition:

public class WeblogMapperAvro extends MapReduceBase
            implements Mapper<AvroWrapper<WeblogRecord>, NullWritable, 
Text, NullWritable>
{
 public void map(AvroWrapper<WeblogRecord> key, NullWritable value, 
OutputCollector<Text, NullWritable> oc, Reporter rprtr) throws 
IOException {
       WeblogRecord weblogRecord = key.datum();
      //process the web log record
    }
}
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See also
The following recipes will demonstrate additional data serialization libraries that can be  
used with Hadoop:

 f Using Apache Thrift to serialize data

 f Using Protocol Buffers to serialize data

Using Apache Thrift to serialize data
Apache Thrift is a cross-language serialization and RPC services framework. Thrift uses  
an interface definition file to generate bindings in many languages, including Java.

This recipe demonstrates the defining of a Thrift interface, the generation of the 
corresponding Java bindings, and the use of these bindings to serialize a Java object to  
HDFS using MapReduce.

Getting ready
You will need to download/compile/install the following:

 f Hadoop LZO library

 f Apache Thrift Version 0.7.0, from http://thrift.apache.org/

 f The latest version of Elephant Bird, from https://github.com/kevinweil/
elephant-bird

 f The test data file weblog_entries.txt, from http://www.packtpub.com/
support

To compile and install Apache Thrift, first ensure that you have all the required  
dependencies using Yum:

# yum install automake libtool flex bison pkgconfig gcc-c++ boost-devel 
libevent-devel zlib-devel python-devel ruby-devel openssl-devel

Next, build Elephant Bird.

$ cd /path/to/elephant-bird

$ ant

Copy the elephant-bird-X.X.X.jar file to the classpath of your development environment.
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How to do it...
1. Set up the directory structure.

$ mkdir test-thrift

$ mkdir test-thrift/src

$ mkdir test-thrift/src/thrift

$ mkdir test-thrift/src/java

$ cd test-thrift/src/thrift

2. Next, create an interface definition:
namespace java com.packt.hadoop.hdfs.ch2.thrift

struct WeblogRecord {
  1: optional string cookie,
  2: string page,
  3: i64 timestamp,
  4: string ip
}

Save the file as weblog_record.thrift in the test-thrift/src/thrift/ 
folder.

3. Compile and generate the .java file:
# thrift --gen java -o src/java/ src/thrift/weblog_record.thrift

Thrift should have generated a file named WeblogRecord.java in the src/java/ 
folder.

4. Now, we will write a MapReduce application to read weblog_entries.txt from 
HDFS and use Elephant-Bird's LzoThriftBlockOutputFormat class to serialize 
the WeblogRecord object to an LZO compressed file
public class ThriftMapper extends Mapper<Object, Text, 
NullWritable, ThriftWritable<WeblogRecord>> {

    private ThriftWritable<WeblogRecord> thriftRecord = 
ThriftWritable.newInstance(WeblogRecord.class);
    private WeblogRecord record = new WeblogRecord();
    private SimpleDateFormat dateFormatter = new 
SimpleDateFormat("yyyy-MM-dd:HH:mm:ss");
    
    @Override
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    protected void map(Object key, Text value, Context context) 
throws IOException, InterruptedException {
        String[] tokens = value.toString().split("\t");
        String cookie = tokens[0];
        String page = tokens[1];
        String date = tokens[2];
        String time = tokens[3];
        String formatedDate = date + ":" + time;
        Date timestamp = null;
        try {
            timestamp = dateFormatter.parse(formatedDate);
        } catch(ParseException ex) {
            return;
        }
        String ip = tokens[4];
        record.setCookie(cookie);
        record.setPage(page);
        record.setTimestamp(timestamp.getTime());
        record.setIp(ip);
        thriftRecord.set(record);
        context.write(NullWritable.get(), thriftRecord);
    }
}

5. Finally, we will configure the MapReduce job.

public class ThriftWriter extends Configured implements Tool {
    
    public int run(String[] args) throws Exception {
                
        Path inputPath = new Path(args[0]);
        Path outputPath = new Path(args[1]);
        
        Configuration conf = getConf();
        Job weblogJob = new Job(conf);
        weblogJob.setJobName("ThriftWriter");
        weblogJob.setJarByClass(getClass());
        weblogJob.setNumReduceTasks(0);
        weblogJob.setMapperClass(ThriftMapper.class);        
        weblogJob.setMapOutputKeyClass(LongWritable.class);
        weblogJob.setMapOutputValueClass(Text.class);
        weblogJob.setOutputKeyClass(LongWritable.class);
        weblogJob.setOutputValueClass(Text.class);
        weblogJob.setInputFormatClass(TextInputFormat.class);
        weblogJob.setOutputFormatClass(
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LzoThriftBlockOutputFormat.class);
        
        FileInputFormat.setInputPaths(weblogJob, inputPath);
        LzoThriftBlockOutputFormat.setClassConf(
WeblogRecord.class, weblogJob.getConfiguration());
        LzoThriftBlockOutputFormat.setOutputPath(weblogJob, 
outputPath);
               
        if (weblogJob.waitForCompletion(true)) {
            return 0;
        }
        return 1;
    }
    
    public static void main( String[] args ) throws Exception {
        int returnCode = ToolRunner.run(
new ThriftWriter(), args);
        System.exit(returnCode);
    }
}

How it works...
The first task required us to define and compile a Thrift interface definition. This definition  
file can be used to generate bindings in any language that Thrift supports.

Next, we used Elephant Bird to build a MapReduce application to serialize the 
WeblogRecord object that Thrift generated. To set up the MapReduce job, we set the  
input format to read a normal text file:

 weblogJob.setInputFormatClass(TextInputFormat.class);

Then the output format was configured to use Thrift block format compression with LZO  
to store the output records.

LzoThriftBlockOutputFormat.setClassConf(
WeblogRecord.class, weblogJob.getConfiguration());
        LzoThriftBlockOutputFormat.setOutputPath(weblogJob, 
outputPath);

In the mapper, we use the ThriftWritable class of Elephant Bird to wrap 
the WeblogRecord object. The ThriftWritable class is derived from the 
WritableComparable class of Hadoop, which must be implemented by all the  
keys emitted in MapReduce. Every time we generate any type of binding using  
Thrift, the ThriftWritable class helps avoid having to write a custom  
WritableComparable class.
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In the mapper, we instantiate both ThriftWritable and WeblogRecord instances:

    private ThriftWritable<WeblogRecord> thriftRecord = 
      ThriftWritable.newInstance(WeblogRecord.class);
    private WeblogRecord record = new WeblogRecord();

Then, we call the set method of the thriftRecord object with an instance of 
WeblogRecord. Finally, the mapper emits the thriftRecord object, which contains an 
instance of WeblogRecord.

thriftRecord.set(record);
context.write(NullWritable.get(), thriftRecord);

See also
The following recipe will demonstrate another popular serialization framework developed  
by Google:

 f Using Protocol Buffers to serialize Data

Using Protocol Buffers to serialize data
Protocol Buffers is a cross-language data format. Protocol Buffers uses an interface  
definition file to generate bindings in many languages, including Java.

This recipe will demonstrate how to define a Protocol Buffers message, generate the 
corresponding Java bindings, and use these bindings to serialize a Java object to HDFS  
using MapReduce.

Getting ready
You will need to download/compile/install the following:

 f Hadoop LZO library

 f Google Protocol Buffers Version 2.3.0 from http://code.google.com/p/
protobuf/

 f Elephant Bird (see the previous recipe)

 f The test data file weblog_entries.txt, from http://www.packtpub.com/
support

Note that you will need to have a GNU C/C++ compiler collection 
installed to compile the protocol buffer source. We will be compiling the 
source code for Protocol Buffers.

http://code.google.com/p/protobuf/
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To install GNU C/C++ using Yum, run the following command as the root user from a bash shell:

# yum install gcc gcc-c++ autoconf automake

To compile and install Protocol Buffers, type the following lines of code:

$ cd /path/to/protobuf

$ ./configure

$ make

$ make check

# make install

# ldconfig

How to do it...
1. Set up the directory structure.

$ mkdir test-protobufs

$ mkdir test-protobufs/src

$ mkdir test-protobufs/src/proto

$ mkdir test-protobufs/src/java

$ cd test-protobufs/src/proto

2. Next, create the protocol format.
package example;

option java_package = "com.packt.hadoop.hdfs.ch2";
option java_outer_classname = "WeblogRecord";

message Record {
  optional string cookie = 1;
  required string page = 2;
  required int64 timestamp = 3;
  required string ip = 4;
}

Save the file as weblog_record.proto in the test-protobufs/src/proto/ 
folder.

3. Compile the protocol format from the test-protobufs folder. WeblogRecord.
java is generated in src/java/ by protoc:
$ cd ../../

$ protoc --proto_path=src/proto/ --java_out=src/java/ src/proto/
weblog_record.proto
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4. Now, we will write a MapReduce application to read weblog_entries.txt  
from HDFS and use Elephant Bird's LzoProtobufBlockOutputFormat class  
to serialize the WeblogRecord object to an LZO compressed file:
public class ProtobufMapper extends Mapper<Object, Text, 
NullWritable, ProtobufWritable<WeblogRecord.Record>> {

    private ProtobufWritable<WeblogRecord.Record> protobufRecord = 
ProtobufWritable.newInstance(WeblogRecord.Record.class);
    private SimpleDateFormat dateFormatter = new 
SimpleDateFormat("yyyy-MM-dd:HH:mm:ss");
    
    @Override
    protected void map(Object key, Text value, Context context) 
throws IOException, InterruptedException {
        String[] tokens = value.toString().split("\t");
        String cookie = tokens[0];
        String page = tokens[1];
        String date = tokens[2];
        String time = tokens[3];
        String formatedDate = date + ":" + time;
        Date timestamp = null;
        try {
            timestamp = dateFormatter.parse(formatedDate);
        } catch(ParseException ex) {
            return;
        }
        String ip = tokens[4];
        protobufRecord.set(WeblogRecord.Record.newBuilder()
                .setCookie(cookie)
                .setPage(page)
                .setTimestamp(timestamp.getTime())
                .setIp(ip)
                .build());
        context.write(NullWritable.get(), protobufRecord);
    }
}
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5. Finally, we will configure the MapReduce job.

public class ProtobufWriter extends Configured implements Tool {
    
    public int run(String[] args) throws Exception {
        
        Path inputPath = new Path(args[0]);
        Path outputPath = new Path(args[1]);
        
        Configuration conf = getConf();
        Job weblogJob = new Job(conf);
        weblogJob.setJobName("ProtobufWriter");
        weblogJob.setJarByClass(getClass());
        weblogJob.setNumReduceTasks(0);
        weblogJob.setMapperClass(ProtobufMapper.class);  
        weblogJob.setMapOutputKeyClass(LongWritable.class);
        weblogJob.setMapOutputValueClass(Text.class);
        weblogJob.setOutputKeyClass(LongWritable.class);
        weblogJob.setOutputValueClass(Text.class);
        weblogJob.setInputFormatClass(TextInputFormat.class);
        weblogJob.setOutputFormatClass(
LzoProtobufBlockOutputFormat.class);
        
        FileInputFormat.setInputPaths(weblogJob, inputPath);
        LzoProtobufBlockOutputFormat.setClassConf(WeblogRecord.
Record.class, weblogJob.getConfiguration());
        LzoProtobufBlockOutputFormat.setOutputPath(weblogJob, 
outputPath);
        
       
        if(weblogJob.waitForCompletion(true)) {
            return 0;
        }
        return 1;
    }
    
    public static void main( String[] args ) throws Exception {
        int returnCode = ToolRunner.run(
new ProtobufWriter(), args);
        System.exit(returnCode);
    }
}
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How it works...
The first task is to define and compile a Protocol Buffers message definition. This definition 
file can be used to generate bindings in any language the Protocol Buffers compiler supports. 
There are a couple of things to note about the format of the message.

First, the package definition package example; is not related to Java packages. It is 
the namespace of the message defined in the *.proto file. Second, the option java_
package declaration is a Java package definition. Finally, the option java_outer_
classname declaration is the output class name that will be used. Within java_outer_
classname, the Record class will be defined.

Next, we wrote a MapReduce application to serialize the WeblogRecord object generated  
by the Protocol Buffers compiler. To set up the MapReduce job, we set the input format to  
read a normal text file.

 weblogJob.setInputFormatClass(TextInputFormat.class);

Then, the output format was set to store the records produced from the job in the Protocol 
Buffers block format, compressed using LZO.

LzoProtobufBlockOutputFormat.setClassConf(WeblogRecord.Record.class, 
weblogJob.getConfiguration());
        LzoProtobufBlockOutputFormat.setOutputPath(weblogJob, 
outputPath);
        

In the mapper, we use the ProtobufWritable class of Elephant Bird to wrap the 
WeblogRecord.Record object. The ProtobufWritable class is derived from the 
WritableComparable class of Hadoop, which all keys emitted in MapReduce must 
implement. Every time we generate any type of binding using protoc, the ProtobufWritable 
class helps avoid having to write a custom WritableComparable class.

In the mapper, we instantiate a ProtobufWritable instance.

    private ProtobufWritable<WeblogRecord.Record> protobufRecord = 
ProtobufWritable.newInstance(WeblogRecord.Record.class);

Then, we call the set method of the protobufRecord object with a new instance of 
WeblogRecord.Record. Finally, the mapper emits the protobufRecord object:

protobufRecord.set(WeblogRecord.Record.newBuilder()
                .setCookie(cookie)
                .setPage(page)
                .setTimestamp(timestamp.getTime())
                .setIp(ip)
                .build());
context.write(NullWritable.get(), protobufRecord);
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Setting the replication factor for HDFS
HDFS stores files as data blocks and distributes these blocks across the entire cluster.  
As HDFS was designed to be fault-tolerant and to run on commodity hardware, blocks  
are replicated a number of times to ensure high data availability. The replication factor is  
a property that can be set in the HDFS configuration file that will allow you to adjust the  
global replication factor for the entire cluster. For each block stored in HDFS, there will be  
n - 1 duplicated blocks distributed across the cluster. For example, if the replication factor  
was set to 3 there would be one original block and two replicas.

Getting ready
Open the hdfs-site.xml file. This file is usually found in the conf/ folder of the Hadoop 
installation directory.

How to do it...
Change or add the following property to hdfs-site.xml:

<property>     
<name>dfs.replication<name>     
<value>3<value>     
<description>Block Replication<description>   
<property>

How it works...
hdfs-site.xml is used to configure HDFS. Changing the dfs.replication property in 
hdfs-site.xml will change the default replication for all files placed in HDFS.

There's more...
You can also change the replication factor on a per-file basis using the Hadoop FS shell.

$ hadoop fs –setrep –w 3 /my/file

Alternatively, you can change the replication factor of all the files under a directory.

$ hadoop fs –setrep –w 3 -R /my/dir
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See also
 f The Setting the block size for HDFS recipe in this chapter; it will explain how to set  

the block size for HDFS

Setting the block size for HDFS
HDFS was designed to hold and manage large amounts of data; therefore typical HDFS  
block sizes are significantly larger than the block sizes you would see for a traditional 
filesystem (for example, the filesystem on my laptop uses a block size of 4 KB). The block  
size setting is used by HDFS to divide files into blocks and then distribute those blocks  
across the cluster. For example, if a cluster is using a block size of 64 MB, and a 128-MB  
text file was put in to HDFS, HDFS would split the file into two blocks (128 MB/64 MB)  
and distribute the two chunks to the data nodes in the cluster.

Getting ready
Open the hdfs-site.xml file. This file is usually found in the conf/ folder of the Hadoop 
installation directory.

How to do it...
Set the following property in hdfs-size.xml:

<property>     
<name>dfs.block.size<name>     
<value>134217728<value>     
<description>Block size<description>   
<property>

How it works...
hdfs-site.xml is used to configure HDFS. Changing the dfs.block.size property in 
hdfs-site.xml will change the default block size for all the files placed into HDFS. In this 
case, we set the dfs.block.size to 128 MB. Changing this setting will not affect the block 
size of any files currently in HDFS. It will only affect the block size of files placed into HDFS 
after this setting has taken effect.
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Transforming Data

In this chapter, we will cover:

 f Transforming Apache logs into TSV format using MapReduce

 f Using Apache Pig to filter bot traffic from web server logs

 f Using Apache Pig to sort web server log data by timestamp

 f Using Apache Pig to sessionize web server log data

 f Using Python to extend Apache Pig functionality

 f Using MapReduce and secondary sort to calculate page views

 f Using Hive and Python to clean and transform geographical event data

 f Using Python and Hadoop Streaming to perform a time series analytic

 f Using MultipleOutputs in MapReduce to name output files

 f Creating custom Hadoop Writable and InputFormat to read geographical event data

Introduction
Parsing and formatting large amounts of data to meet business requirements is a challenging 
task. The software and the architecture must meet strict scalability, reliability, and run-time 
constraints. Hadoop is an ideal environment for extracting and transforming large-scale data. 
Hadoop provides a scalable, reliable, and distributed processing environment that is ideal for 
large-scale data processing. This chapter will demonstrate methods to extract and transform 
data using MapReduce, Apache Pig, Apache Hive, and Python.
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Transforming Apache logs into TSV format 
using MapReduce

MapReduce is an excellent tool for transforming data into tab-separated values (TSV). Once 
the input data is loaded into HDFS, the entire Hadoop cluster can be utilized to transform large 
datasets in parallel. This recipe will demonstrate the method to extract records from Apache 
access logs and store those records as tab-separated values in HDFS.

Getting ready
You will need to download the apache_clf.txt dataset from the support page of the  
Packt website, http://www.packtpub.com/support, and place the file in HDFS.

How to do it...
Perform the following steps to transform Apache logs to TSV format using MapReduce:

1. Build a regular expression pattern to parse the Apache combined log format:
private Pattern p = Pattern.compile("^([\\d.]+) (\\S+) (\\S+) \\
[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(\\w+) (.+?) (.+?)\" (\\d+) (\\d+) 
\"([^\"]+|(.+?))\" \"([^\"]+|(.+?))\"", Pattern.DOTALL);

2. Create a mapper class to read the log files. The mapper should emit IP address as 
the key, and the following as values: timestamp, page, http status, bytes returned to 
the client, and the user agent of the client:
public class CLFMapper extends Mapper<Object, Text, Text, Text>{

    private SimpleDateFormat dateFormatter = 
            new SimpleDateFormat("dd/MMM/yyyy:HH:mm:ss Z");
    private Pattern p = 
            Pattern.compile("^([\\d.]+) (\\S+) (\\S+)"
            + " \\[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(\\w+) (.+?) 
(.+?)\" "
            + "(\\d+) (\\d+) \"([^\"]+|(.+?))\" 
\"([^\"]+|(.+?))\"", 
            Pattern.DOTALL);
    
    private Text outputKey = new Text();
    private Text outputValue = new Text();
    @Override
    protected void map(Object key, Text value, Context 
      context) throws IOException, InterruptedException {
        String entry = value.toString();

http://www.packtpub.com/support
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        Matcher m = p.matcher(entry);
        if (!m.matches()) {
            return;
        }
        Date date = null;
        try {
            date = dateFormatter.parse(m.group(4));
        } catch (ParseException ex) {
            return;
        }
        outputKey.set(m.group(1)); //ip
        StringBuilder b = new StringBuilder();
        b.append(date.getTime()); //timestamp
        b.append('\t');
        b.append(m.group(6)); //page
        b.append('\t');
        b.append(m.group(8)); //http status
        b.append('\t');
        b.append(m.group(9)); //bytes
        b.append('\t');
        b.append(m.group(12)); //useragent
        outputValue.set(b.toString());
        context.write(outputKey, outputValue);
    }
   
}

3. Now, create a map-only job to apply the transformation:
public class ParseWeblogs extends Configured implements Tool {
  
  public int run(String[] args) throws Exception {
    
    Path inputPath = new Path(args[0]);
    Path outputPath = new Path(args[1]);
    
    Configuration conf = getConf();
    Job weblogJob = new Job(conf);
    weblogJob.setJobName("Weblog Transformer");
    weblogJob.setJarByClass(getClass());
    weblogJob.setNumReduceTasks(0);
    weblogJob.setMapperClass(CLFMapper.class);        
    weblogJob.setMapOutputKeyClass(Text.class);
    weblogJob.setMapOutputValueClass(Text.class);
    weblogJob.setOutputKeyClass(Text.class);
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    weblogJob.setOutputValueClass(Text.class);
    weblogJob.setInputFormatClass(TextInputFormat.class);
    weblogJob.setOutputFormatClass(TextOutputFormat.class);
    
    FileInputFormat.setInputPaths(weblogJob, inputPath);
    FileOutputFormat.setOutputPath(weblogJob, outputPath);
    
    
    if(weblogJob.waitForCompletion(true)) {
      return 0;
    }
    return 1;
  }
  
  public static void main( String[] args ) throws Exception {
    int returnCode = ToolRunner.run(new ParseWeblogs(), args);
    System.exit(returnCode);
  }
  
}

4. Finally, launch the MapReduce job:

$ hadoop jar myjar.jar com.packt.ch3.etl.ParseWeblogs /user/
hadoop/apache_clf.txt /user/hadoop/apache_clf_tsv

How it works...
We first created a mapper that was responsible for the extraction of the desired information  
we from the Apache weblogs and for emitting the extracted fields in a tab-separated format.

Next, we created a map-only job to transform the web server log data into a tab-separated 
format. The key-value pairs emitted from the mapper were stored in a file in HDFS.

There's more...
By default, the TextOutputFormat class uses a tab to separate the key and value  
pairs. You can change the default separator by setting the mapred.textoutputformat.
separator property. For example, to separate the IP and the timestamp by a ',', we could 
re-run the job using the following command:

$ hadoop jar myjar.jar com.packt.ch3.etl.ParseWeblogs -Dmapred.
textoutputformat.separator=',' /user/hadoop/apache_clf.txt /user/hadoop/
csv
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See also
The tab-separated output from this recipe will be used in the following recipes:

 f Using Apache Pig to filter bot traffic from web server logs

 f Using Apache Pig to sort web server log data by timestamp

 f Using Apache Pig to sessionize web server log data

 f Using Python to extend Apache Pig functionality

 f Using MapReduce and secondary sort to calculate page views

Using Apache Pig to filter bot traffic from 
web server logs

Apache Pig is a high-level language for creating MapReduce applications. This recipe will  
use Apache Pig and a Pig user-defined filter function (UDF) to remove all bot traffic from a 
sample web server log dataset. Bot traffic is the non-human traffic that visits a webpage, 
such as spiders.

Getting ready
You will need to download/compile/install the following:

 f Version 0.8.1 or better of Apache Pig from http://pig.apache.org/

 f Test data: apache_tsv.txt and useragent_blacklist.txt from the support 
page on the Packt website, http://www.packtpub.com/support

 f Place apache_tsv.txt in HDFS and put useragent_blacklist.txt in your 
current working directory

How to do it...
Carry out the following steps to filter bot traffic using an Apache Pig UDF:

1. First, write a Pig UDF that extends the Pig FilterFunc abstract class. This class  
will be used to filter records in the weblogs dataset by using the user agent string.
public class IsUseragentBot extends FilterFunc {

    private Set<String> blacklist = null;
    
    private void loadBlacklist() throws IOException {
        blacklist = new HashSet<String>();
        BufferedReader in = new BufferedReader(new 
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          FileReader("blacklist"));
        String userAgent = null;
        while ((userAgent = in.readLine()) != null) {
            blacklist.add(userAgent);
        }
    }
    
    @Override
    public Boolean exec(Tuple tuple) throws IOException {
        if (blacklist == null) {
            loadBlacklist();
        }
        if (tuple == null || tuple.size() == 0) {
            return null;
        }
        
        String ua = (String) tuple.get(0);
        if (blacklist.contains(ua)) {
            return true;
        }
        return false;   
    }
    
}

2. Next, create a Pig script in your current working directory. At the beginning of the  
Pig script, give the MapReduce framework the path to useragent_blacklist.txt 
in HDFS:
set mapred.cache.files '/user/hadoop/blacklist.txt#blacklist';

set mapred.create.symlink 'yes';

3. Register the JAR file containing the IsUseragentBot class with Pig, and write the 
Pig script to filter the weblogs by the user agent:

register myudfjar.jar;

all_weblogs = LOAD '/user/hadoop/apache_tsv.txt' AS (ip: 
chararray, timestamp:long, page:chararray, http_status:int, 
payload_size:int, useragent:chararray);
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nobots_weblogs = FILTER all_weblogs BY NOT com.packt.ch3.etl.pig.
IsUseragentBot(useragent);

STORE nobots_weblogs INTO '/user/hadoop/nobots_weblogs';

To run the Pig job, put myudfjar.jar into the same folder as the Pig script and execute it.

$ ls

$ myudfjar.jar filter_bot_traffic.pig

$ pig –f filter_bot_traffic.pig

How it works...
Apache Pig is extendable through the use of user-defined functions (UDF). One way to create  
a UDF is through the use of the Java abstract classes and interfaces that come with the 
Apache Pig distribution. In this recipe, we wanted to remove all records that contain known  
bot user agent strings. One way to do this is to create our own Pig filter.

The IsUseragentBot class extends the abstract class FilterFunc, which allows us 
to override the exec(Tuple t) method. A Pig Tuple is an ordered list of fields that can 
be any Pig primitive, or null. At runtime, Pig will feed the exec(Tuple t) method of the 
IsUseragentBot class with the user agent strings from our dataset. The UDF will extract  
the user agent string by accessing the first field in the Tuple, and it will return true if we  
find the user agent string is a bot, otherwise the UDF returns false.

In addition, the IsUseragentBot UDF reads a file called blacklist and loads the  
contents into a HashSet instance. The file named blacklist is a symbolic link to 
blacklist.txt, which has been distributed to the nodes in the cluster using the 
distributed cache mechanism. To place a file into the distributed cache, and to create  
the symbolic link, set the following MapReduce properties:

set mapred.cache.files '/user/hadoop/blacklist.txt#blacklist';
set mapred.create.symlink 'yes';

It is important to note that these properties are not Pig properties. These properties are used 
by the MapReduce framework, so you can use these properties to load a file to the distributed 
cache for any MapReduce job.

Next, we told Pig where to find the JAR file containing the IsUseragentBot UDF:

register myudfjar.jar;

Finally, we call the UDF using the Java class name. When the job runs, Pig will instantiate an 
instance of the IsUseragentBot class and feed the exec(Tuple t) method with records 
from the all_weblogs relation.
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There's more...
Starting in Pig Version 0.9, Pig UDFs can access the distributed cache without setting 
the mapred.cache.files and mapred.create.symlink properties. Most abstract 
Pig classes that used to create UDFs now have a method named List<String> 
getCacheFiles() that can be overridden to load files from HDFS into the distributed  
cache. For example, the IsUseragentBot class can be modified to load the blacklist.
txt file to the distributed cache by adding the following method:

@Override
public List<String> getCacheFiles() {
      List<String> list = new ArrayList<String>();
      list.add("/user/hadoop/blacklist.txt#blacklist");
      return list;
}

See also
Apache Pig will be used with the following recipes in this chapter:

 f Using Apache Pig to sort web server log data by timestamp

 f Using Apache Pig to sessionize web server log data

 f Using Python to extend Apache Pig functionality

 f Using MapReduce and secondary sort to calculate page views

Using Apache Pig to sort web server log 
data by timestamp

Sorting data is a common data transformation technique. In this recipe, we will demonstrate 
the method of writing a simple Pig script to sort a dataset using the distributed processing 
power of the Hadoop cluster.

Getting ready
You will need to download/compile/install the following:

 f Version 0.8.1 or better of Apache Pig from http://pig.apache.org/

 f Test data: apache_nobots_tsv.txt from http://www.packtpub.com/
support
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How to do it...
Perform the following steps to sort data using Apache Pig:

1. First load the web server log data into a Pig relation:
nobots_weblogs = LOAD '/user/hadoop/apache_nobots_tsv.txt' AS 
(ip: chararray, timestamp:long, page:chararray, http_status:int, 
payload_size:int, useragent:chararray);

2. Next, order the web server log records by the timestamp field in the  
ascending order:
ordered_weblogs = ORDER nobots BY timestamp;

3. Finally, store the sorted results in HDFS:
STORE ordered_weblogs INTO '/user/hadoop/ordered_weblogs';\

4. Run the Pig job:

$ pig –f ordered_weblogs.pig

How it works...
Sorting data in a distributed, share-nothing environment is non-trivial. The Pig relational 
operator ORDER BY has the capability to provide total ordering of a dataset. This means  
any record that appears in the output file part-00000, will have a timestamp less than  
the timestamp in the output file part-00001 (since our data was sorted by timestamp).

There's more...
The Pig ORDER BY relational operator sorts data by multiple fields, and also supports sorting 
data in the descending order. For example, to sort the nobots relationship by the ip and 
timestamp fields, we would use the following expression:

ordered_weblogs = ORDER nobots BY ip, timestamp;

To sort the nobots relationship by timestamp in the descending order, use the desc option:

ordered_weblogs = ORDER nobots timestamp desc;

See also
The following recipes will use Apache Pig:

 f Using Apache Pig to sessionize web server log data

 f Using Python to extend Apache Pig functionality

 f Using MapReduce and secondary sort to calculate page views
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Using Apache Pig to sessionize web server 
log data

A session represents a user's continuous interaction with a website, and the user session 
ends when an arbitrary activity timeout has occurred. A new session begins once the user 
returns to the website after a period of inactivity. This recipe will use Apache Pig and a Pig 
user-defined function (UDF) to generate a subset of records from apache_nobots_tsv.txt 
that marks the beginning of a session for a specific IP.

Getting ready
You will need to download/compile/install the following:

 f Version 0.8.1 or better of Apache Pig from http://pig.apache.org/

 f Test data: apache_nobots_tsv.txt from http://www.packtpub.com/
support

How to do it...
The following are the steps to create an Apache Pig UDF to sessionize web server log data:

1. Start by creating a Pig UDF to emit only the first record of a session. The UDF extends 
the Pig abstract class EvalFunc and implements the Pig interface, Accumulator. 
This class is responsible for applying the session logic on the web server log dataset:
public class Sessionize extends EvalFunc<DataBag> implements 
Accumulator<DataBag> {
    
    private long sessionLength = 0;
    private Long lastSession = null;
    private DataBag sessionBag = null;
    
    public Sessionize(String seconds) {
        sessionLength = Integer.parseInt(seconds) * 1000;
        sessionBag = BagFactory.getInstance().newDefaultBag();
    }

    @Override
    public DataBag exec(Tuple tuple) throws IOException {
        accumulate(tuple);
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        DataBag bag = getValue();
        cleanup();
        return bag;
    }

    @Override
    public void accumulate(Tuple tuple) throws IOException {
        if (tuple == null || tuple.size() == 0) {
            return;
        }
        DataBag inputBag = (DataBag) tuple.get(0);
        for(Tuple t: inputBag) {
            Long timestamp = (Long)t.get(1);
            if (lastSession == null) {
                sessionBag.add(t);
            }
            else if ((timestamp - lastSession) >= sessionLength) {
                sessionBag.add(t);
            }
            lastSession = timestamp;
        }
    }

    @Override
    public DataBag getValue() {
        return sessionBag;
    }    @Override
    public void cleanup() {
        lastSession = null;
        sessionBag = BagFactory.getInstance().newDefaultBag();
    }
}

2. Next, create a Pig script to load and group the web server log records by IP address:
register myjar.jar;
define Sessionize com.packt.ch3.etl.pig.Sessionize('1800'); /* 30 
minutes */

nobots_weblogs = LOAD '/user/hadoop/apache_nobots_tsv.txt' AS 
(ip: chararray, timestamp:long, page:chararray, http_status:int, 
payload_size:int, useragent:chararray);

ip_groups = GROUP nobots_weblogs BY ip;
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3. Finally, write the Pig expression to order all of the records associated with a specific  
IP by timestamp. Then, send the ordered records to the Sessionize UDF:
sessions = FOREACH ip_groups {
                ordered_by_timestamp = ORDER nobots_weblogs BY 
timestamp;
                GENERATE FLATTEN(Sessionize(ordered_by_
timestamp));
           }

STORE sessions INTO '/user/jowens/sessions';

4. Copy the JAR file containing the Sessionize class to the current working directory, 
and run the Pig script:

$ pig –f sessionize.pig

How it works...
We first created a UDF that extended the EvalFunc abstract class and implemented the 
Accumulator interface. The EvalFunc class is used to create our own function that can 
be used within a Pig script. Data will be passed to the UDF via the exec(Tuple t) method, 
where it is processed. The Accumulator interface is optional for custom eval functions,  
and allows Pig to optimize the data flow and memory utilization of the UDF. Instead of passing 
the whole dataset, similar to how the EvalFunc class works, the Accumulator interface 
allows for subsets of the data to be passed to the UDF.

Next, we wrote a Pig script to group all of the web server log records by IP, and sort the  
records by timestamp. We need the data sorted by timestamp because the Sessionize  
UDF uses the sorted order of the timestamps to determine the start of each session.

Then, we generated all of the sessions associated with a specific IP by calling the  
Sessionize alias.

Finally, we used the FLATTEN operator to unnest the Tuples in the DataBags emitted from  
the UDF.

See also
 f Using Python to extend Apache  Pig functionality
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Using Python to extend Apache Pig 
functionality

In this recipe, we will use Python to create a simple Apache Pig user-defined function (UDF)  
to count the number of records in a Pig DataBag.

Getting ready
You will need to download/compile/install the following:

 f Jython 2.5.2 from http://www.jython.org/

 f Version 0.8.1 or better of Apache Pig from http://pig.apache.org/

 f Test data: apache_nobots_tsv.txt from http://www.packtpub.com/
support

This recipe requires the Jython standalone JAR file. To build the file, download the Jython java 
installer, run the installer, and select Standalone from the installation menu.

$ java –jar jython_installer-2.5.2.jar

Add the Jython standalone JAR file to Apache Pig's classpath:

$ export PIG_CLASSPATH=$PIG_CLASSPATH:/path/to/jython2.5.2/jython.jar

How to do it...
The following are the steps to create an Apache Pig UDF using Python:

1. Start by creating a simple Python function to count the number of records in a  
Pig DataBag:
#!/usr/bin/python

@outputSchema("hits:long")
def calculate(inputBag):
  hits = len(inputBag)
  return hits
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2. Next, create a Pig script to group all of the web server log records by IP and page.  
Then send the grouped web server log records to the Python function:

register 'count.py' using jython as count;

nobots_weblogs = LOAD '/user/hadoop/apache_nobots_tsv.txt' AS 
(ip: chararray, timestamp:long, page:chararray, http_status:int, 
payload_size:int, useragent:chararray);

ip_page_groups = GROUP nobots_weblogs BY (ip, page);

ip_page_hits = FOREACH ip_page_groups GENERATE FLATTEN(group), 
count.calculate(nobots_weblogs);

STORE ip_page_hits INTO '/user/hadoop/ip_page_hits';

How it works...
First, we created a simple Python function to calculate the length of a Pig DataBag. In addition, 
the Python script contained the Python decorator, @outputSchema("hits:long"), that 
instructs Pig on how to interpret the data returned by the Python function. In this case,  
we want Pig to store the data returned by this function as a Java Long in a field named hits.

Next, we wrote a Pig script that registers the Python UDF using the statement:

register 'count.py' using jython as count;

Finally, we called the calculate() function using the alias count, in the Pig DataBag:

count.calculate(nobots_weblogs);

Using MapReduce and secondary sort to 
calculate page views

In a typical MapReduce job, key-value pairs are emitted from the mappers, shuffled, and 
sorted, and then finally passed to the reducers. There is no attempt by the MapReduce 
framework to sort the values passed to the reducers for processing. However, there are  
cases when we need the values passed to the reducers to be sorted, such as in the case  
of counting page views.

To calculate page views, we need to calculate distinct IPs by page. One way to calculate this is 
to have the mappers emit the key-value pairs: page and IP. Then, in the reducer, we can store 
all of the IPs associated with a page in a set. However, this approach is not scalable. What 
happens if the weblogs contain a large number of distinct IPs visiting a single page? We might 
not be able to fit the entire set of distinct IPs in memory.



Chapter 3

79

The MapReduce framework provides a way to work around this complication. In this recipe,  
we will write a MapReduce application that allows us to sort the values going to a reducer 
using an approach known as the secondary sort. Instead of holding all of the distinct IPs in 
memory, we can keep track of the last IP we saw while processing the values in the reducer, 
and we can maintain a counter to calculate distinct IPs.

Getting ready
You will need to download the apache_nobots_tsv.txt dataset from  
http://www.packtpub.com/support and place the file into HDFS.

How to do it...
The following steps show how to implement a secondary sort in MapReduce to calculate  
page views:

1. Create a class that implements the Hadoop WritableComparable interface.  
We will use this class to store the key and sort fields:
public class CompositeKey implements WritableComparable {

    private Text first = null;
    private Text second = null;
    
    public CompositeKey() {
        
    }

    public CompositeKey(Text first, Text second) {
        this.first = first;
        this.second = second;
    }

    //...getters and setters
    
    public void write(DataOutput d) throws IOException {
        first.write(d);
        second.write(d);
    }
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    public void readFields(DataInput di) throws IOException {
        if (first == null) {
            first = new Text();
        }
        if (second == null) {
            second = new Text();
        }
        first.readFields(di);
        second.readFields(di);
    }

    public int compareTo(Object obj) {
        CompositeKey other = (CompositeKey) obj;
        int cmp = first.compareTo(other.getFirst());
        if (cmp != 0) {
            return cmp;
        }
        return second.compareTo(other.getSecond());
    }

    @Override
    public boolean equals(Object obj) {
        CompositeKey other = (CompositeKey)obj;
        return first.equals(other.getFirst());
    }

    @Override
    public int hashCode() {
        return first.hashCode();
    }
}

2. Next, write the Mapper and Reducer classes. The Mapper class will use the 
CompositeKey class to store two fields. The first will be the page field, which is 
used to group and partition the data leaving the mapper. The second is the ip field, 
which is used to sort the values passed to the reducer.
public class PageViewMapper extends Mapper<Object, Text, 
CompositeKey, Text> {
    private CompositeKey compositeKey = new CompositeKey();
    private Text first = new Text();
    private Text second = new Text();
    private Text outputValue = new Text();
    @Override
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    protected void map(Object key, Text value, Context 
      context) throws IOException, InterruptedException {
        String[] tokens = value.toString().split("\t");
        if (tokens.length > 3) {
            String page = tokens[2];
            String ip = tokens[0];
            first.set(page);
            second.set(ip);
            compositeKey.setFirst(first);
            compositeKey.setSecond(second);
            outputValue.set(ip);
            context.write(compositeKey, outputValue);
        }
    }
}

public class PageViewReducer extends Reducer<CompositeKey, Text, 
Text, LongWritable> {
    private LongWritable pageViews = new LongWritable();

    @Override
    protected void reduce(CompositeKey key, Iterable<Text> 
      values, Context context) 
      throws IOException, InterruptedException {
        String lastIp = null;
        long pages = 0;
        for(Text t : values) {
            String ip = t.toString();
            if (lastIp == null) {
                lastIp = ip;
                pages++;
            }
            else if (!lastIp.equals(ip)) {
                lastIp = ip;
                pages++;
            }
            else if (lastIp.compareTo(ip) > 0) {
                throw new IOException("secondary sort failed");
            }
        }
        pageViews.set(pages);
        context.write(key.getFirst(), pageViews);
    }
}
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3. Create three classes to partition, group, and sort the data leaving the mapper. These 
classes are used by the MapReduce framework. First, write a class to partition the 
data emitted from the mapper by the page field:
static class CompositeKeyParitioner extends 
Partitioner<CompositeKey, Writable> {
        
        @Override
        public int getPartition(CompositeKey key, Writable value, 
int numParition) {
            return (key.getFirst().hashCode() &  0x7FFFFFFF) % 
numParition;
        }
    }

4. Next, write a Comparator that will group all of the keys together:
static class GroupComparator extends WritableComparator {
        public GroupComparator() {
            super(CompositeKey.class, true);
        }

        @Override
        public int compare(WritableComparable a, 
WritableComparable b) {
            CompositeKey lhs = (CompositeKey)a;
            CompositeKey rhs = (CompositeKey)b;
            return lhs.getFirst().compareTo(rhs.getFirst());
        }
    }

5. Write a second Comparator that will sort the values passed to the reducer:
static class SortComparator extends WritableComparator {
        public SortComparator() {
            super(CompositeKey.class, true);
        }

        @Override
        public int compare(WritableComparable a, 
WritableComparable b) {
            CompositeKey lhs = (CompositeKey)a;
            CompositeKey rhs = (CompositeKey)b;
            int cmp = lhs.getFirst().compareTo(rhs.getFirst());
            if (cmp != 0) {
                return cmp;
            }
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            return lhs.getSecond().compareTo(rhs.getSecond());
        }
    }

6. Finally, write the code to set up a normal MapReduce job, but tell the MapReduce 
framework to use our own partitioner and comparator classes:

public int run(String[] args) throws Exception {
        
        Path inputPath = new Path(args[0]);
        Path outputPath = new Path(args[1]);
        
        Configuration conf = getConf();
        Job weblogJob = new Job(conf);
        weblogJob.setJobName("PageViews");
        weblogJob.setJarByClass(getClass());
        weblogJob.setMapperClass(PageViewMapper.class);
        weblogJob.setMapOutputKeyClass(CompositeKey.class);
        weblogJob.setMapOutputValueClass(Text.class);
        
        weblogJob.setPartitionerClass(CompositeKeyParitioner.
class);
        weblogJob.setGroupingComparatorClass(GroupComparator.
class);
        weblogJob.setSortComparatorClass(SortComparator.class);
        
        weblogJob.setReducerClass(PageViewReducer.class);
        weblogJob.setOutputKeyClass(Text.class);
        weblogJob.setOutputValueClass(Text.class);
        weblogJob.setInputFormatClass(TextInputFormat.class);
        weblogJob.setOutputFormatClass(TextOutputFormat.class);
        
        FileInputFormat.setInputPaths(weblogJob, inputPath);
        FileOutputFormat.setOutputPath(weblogJob, outputPath);
        
       
        if(weblogJob.waitForCompletion(true)) {
            return 0;
        }
        return 1;
    }
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How it works...
We first created a class named CompositeKey. This class extends the Hadoop 
WritableComparable interface so that we can use the CompositeKey class just like any 
normal Hadoop WritableComparable interface (for example, Text and IntWritable). 
The CompositeKey class holds two Text objects. The first Text object is used to partition 
and group the key-value pairs emitted from the mapper. The second Text object is used to 
perform the secondary sort.

Next, we wrote a mapper class to emit the key-value pair CompositeKey (which consists 
of page and IP) as the key, and IP as the value. In addition, we wrote a reducer class that 
receives a CompositeKey object and a sorted list of IPs. The distinct IP count is calculated 
by incrementing a counter whenever we see an IP that does not equal a previously seen IP.

After writing the mapper and reducer classes, we created three classes to partition, group, 
and sort the data. The CompositeKeyPartitioner class is responsible for partitioning the 
data emitted from the mapper. In this recipe, we want all of the same pages to go to the same 
partition. Therefore, we calculate the partition location based only on the first field of the 
CompositeKey class.

Next, we created a GroupComparator class that uses the same logic as 
CompositeKeyPartitioner. We want all of the same page keys grouped together for 
processing by a reducer. Therefore, the group comparator only inspects the first member of 
the CompositeKey class for comparison.

Finally, we created the SortComparator class. This class is responsible for sorting all 
of the values that are sent to the reducer. As you can see from the method signature, 
compare(WritableComparable a, WritableComparable b), we only receive the keys 
that are sent to each reducer, which is why we needed to include the IP with each and every key 
the mapper emitted. The SortComparator class compares both the first and second members 
of the CompositeKey class to ensure that the values a reducer receives are sorted.

See also
 f Creating custom Hadoop Writable and InputFormat to read geographical event data

Using Hive and Python to clean and 
transform geographical event data

This recipe uses certain operators in Hive to input/output data through a custom Python 
script. The script performs a few simple pruning operations over each row, and outputs a 
slightly modified version of the row into a Hive table.
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Getting ready
You will need to download/compile/install the following:

 f Version 0.7.1 of Apache Hive from http://hive.apache.org/

 f Test data: Nigeria_ACLED.csv, Nigeria_ACLED_cleaned.tsv from http://
www.packtpub.com/support

 f Python 2.7 or greater

This recipe requires the Nigera_ACLED.csv file to be loaded into a Hive table named 
acled_nigeria with the following fields mapped to the respective data types.

Issue the following command to the Hive client:

describe acled_nigeria

You should see the following response:

OK

loc string

event_date  string

year  string

event_type   string  

actor  string   

latitude  double

longitude double

source string

fatalities   string  

How to do it...
Follow these steps to use Python and Hive to transform data:

1. Create a file named clean_and_transform_acled.hql in your local working 
directory and add the inline creation and transformation syntax:
SET mapred.child.java.opts=-Xmx512M;

DROP TABLE IF EXISTS acled_nigeria_cleaned;
CREATE TABLE acled_nigeria_cleaned (
    loc STRING,
    event_date STRING,
    event_type STRING,

http://hive.apache.org/
http://hive.apache.org/
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    actor STRING,
    latitude DOUBLE,
    longitude DOUBLE,
    source STRING,
    fatalities INT
) ROW FORMAT DELIMITED;

ADD FILE ./clean_acled_nigeria.py;
INSERT OVERWRITE TABLE acled_nigeria_cleaned
    SELECT TRANSFORM(
            if(loc != "", loc, 'Unknown'),
            event_date,
            year,
            event_type,
            actor,
            latitude,
            longitude,
            source,
            if(fatalities != "", fatalities, 'ZERO_FLAG'))
    USING 'python clean_acled_nigeria.py'
    AS (loc, event_date, event_type, actor, latitude, longitude, 
source, fatalities)
    FROM acled_nigeria;

2. Next, create another file named clean_acled_nigeria.py in the same working 
directory as clean_and_transform_acled.hql and add the following Python 
code to read from stdin:
#!/usr/bin/env python
import sys

for line in sys.stdin:
   (loc, event_date, year, event_type, actor, lat, lon, src, 
fatalities) = line.strip().split('\t')
  if loc != 'LOCATION': #remove header row
    if fatalities == 'ZERO_FLAG':
    fatalities = '0'
      print '\t'.join([loc, event_date, event_type, \ actor, lat, 
lon, src, fatalities]) #strip out year
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It is important to note that Python is sensitive to inconsistent 
indentation. Be careful if you are copying and pasting Python code.

3. Run the script from the operating system shell by supplying the –f option to the  
Hive client:
$ hive –f clean_and_transform_acled.hql

4. To verify that the script finished properly, run the following command using the –e 
option to the Hive client.

hive –e "select count(1) from acled_nigeria_cleaned"

Hive should count 2931 rows.

How it works...
Let's start with the Hive script that we created. The first line is simply to force a certain  
JVM heap size in our execution. You can set this to any size that may be appropriate for  
your cluster. For the ACLED Nigeria dataset, a 512 MB memory is more than enough.

Immediately following this, we drop any tables with the name acled_nigeria_cleaned  
and create a table by the same name. We can omit the fields delimited by ',' and rows 
delimited by '\n' since they are the default field and row delimiters assumed by ROW 
FORMAT, and the ACLED Nigeria data is in that format.

Once we have our receiving table defined, we need to define the SELECT statement that will 
transform and output the data. The common convention is to add scripts required by SELECT 
before the statement. The command ADD FILE ./clean_acled_nigeria.py tells Hive  
to load the script from the local filesystem into the distributed cache for use by the 
MapReduce tasks.

The SELECT statement uses the Hive TRANSFORM operator to separate each column  
by tabs and to cast all columns as String with nulls as '\n'. The columns loc and 
fatalities are conditionally checked for empty strings; and if found to be empty, are  
set to a default value.

We specify the USING operator to provide a custom script to work with the TRANSFORM 
operator. Hive requires that scripts that make a call to the USING operator for row 
transformation need to first invoke TRANSFORM with the appropriate columns. If the file has 
been placed on the distributed cache, and each node in the cluster has Python installed, the 
MapReduce JVM tasks will be able to execute the script and read the rows in parallel. The AS 
operator contains a list of named fields corresponding to the columns found in the receiving 
Hive table, acled_nigeria_cleaned.
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The Python script is very straightforward. The #!/usr/bin/env python statement is a hint 
to tell the shell how to execute the script. Each row from the table is passed in as a line over 
standard input. The call to strip() method removes any leading/trailing whitespace, and 
then we tokenize it into an array of named variables. Each field from the row is put in a named 
variable. The raw ACLED Nigeria data was used to create the input Hive table, and contains a 
header row we wish to discard. The first condition will check for 'LOCATION' as the value of 
loc, which indicates the header row we want to ignore.

If the row passes this check, we look for the presence of 'ZERO_FLAG' as the value for 
fatalities, which we set in our Hive script. If the script detects this value for fatalities, 
we set the value of fatalities to the string '0'.

Finally, we output each field excluding year in the same order as it was input. Each row will  
be placed into the table acled_nigeria_cleaned.

There's more...
There is a lot going on in this recipe. The following are a few additional explanations that  
will help you with Hive TRANSFORM/USING/AS operations and ETL in general.

Making every column type String
This is a bit counterintuitive and certainly not found anywhere in the Hive documentation. If 
your initial Hive staging table for the incoming data maps each delimited field as a string, it 
will aid tremendously in data validation and debugging. You can use the Hive STRING type to 
successfully represent almost any input into a cleansing script or direct Hive QL statement. 
Trying to perfectly map datatypes over expected values is not flexible to an erroneous input. 
There may be malformed characters for fields where you expect numeric values, and other 
similar hang-ups that make it impossible to perform certain analytics. Using strings over 
the raw data fields will allow a custom script to inspect the invalid data and decide how to 
respond. Moreover, when dealing with CSV or tab-separated data, a slightly misaligned INT 
or FLOAT type mapping in your Hive table declaration, where the data has a STRING, could 
lead to NULL mappings per row. String mappings for every field in the raw table will show you 
column misalignment failures such as these, very quickly. This is just a matter of preference, 
and only applies to tables designed for holding the raw or dirty input for immediate validation 
and transformation into other Hive tables.

Type casing values using the AS keyword
This recipe only outputs strings from the Python script for use over standard output. Hive will 
attempt to cast them to the appropriate type in the receiving table. The advantage to this 
is the time and coding space saved by not having to explicitly cast every field with the AS 
operator. The disadvantage is that this will not fail should a value be cast to an incompatible 
type. For instance, outputting HI THERE to a numeric field will insert NULL for the field value 
for that row. This can lead to undesirable behavior for subsequent SELECT statements over 
the table.
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Testing the script locally
This one is pretty self-explanatory. It is much easier to debug your script directly on the 
command line than it is across MapReduce task error logs. It likely will not prevent you from 
having to troubleshoot issues dealing with scale or data validity, but it will eliminate a large 
majority of the compile time and control flow issues.

Using Python and Hadoop Streaming to 
perform a time series analytic

This recipe shows how to use Hadoop Streaming with Python to perform a basic time series 
analysis over the cleansed ACLED Nigeria dataset. The program is designed to output a list  
of dates in sorted order for each location where the government in Nigeria regained territory.

For this recipe, we will use structured Nigerian conflict data provided by Armed Conflict 
Location and Event dataset collections team.

Getting ready
You will need to download/compile/install the following:

 f Version 0.7.1 of Apache Pig from http://hive.apache.org/

 f Test data: download Nigeria_ACLED_cleaned.tsv from http://www.
packtpub.com/support and place the file into HDFS

 f Python 2.6 or greater

How to do it...
The following are the steps to use Python with Hadoop Streaming:

1. Create a shell script named run_location_regains.sh that runs the Streaming 
job. It is important to change the streaming JAR path to match the absolute path of 
your hadoop-streaming.jar file. The path of the hadoop-streaming.jar file  
is different depending on the Hadoop distribution:
#!/bin/bash

$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/contrib/streaming/hadoop-
streaming-0.20.2-cdh3u1.jar \

    -input /input/acled_cleaned/Nigeria_ACLED_cleaned.tsv \

    -output /output/acled_analytic_out \

    -mapper location_regains_mapper.py \

    -reducer location_regains_by_time.py \

    -file location_regains_by_time.py \

http://hive.apache.org/
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    -file location_regains_mapper.py \

    -jobconf stream.num.map.output.key.fields=2 \

    -jobconf map.output.key.field.separator=\t \

    -jobconf num.key.fields.for.partition=1 \

    -jobconf mapred.reduce.tasks=1

2. Create a Python file named location_regains_mapper.py and add the following:
#!/usr/bin/python
import sys

for line in sys.stdin:
    (loc, event_date, event_type, actor, lat, lon, src, 
fatalities) = line.strip().split('\t');
    (day,month,year) = event_date.split('/')
    if len(day) == 1:
        day = '0' + day
    if len(month) == 1:
        month = '0' + month;
    if len(year) == 2:
        if int(year) > 30 and int(year) < 99:
            year = '19' + year
        else:
            year = '20' + year
    event_date = year + '-' + month + '-' + day
    print '\t'.join([loc, event_date, event_type]);

3. Create a Python file named location_regains_by_time.py and add the 
following:
#!/usr/bin/python
import sys

current_loc = "START_OF_APP"
govt_regains=[]
for line in sys.stdin: 
  (loc,event_date,event_type) = line.strip('\n').split('\t')
  if loc != current_loc:
    if current_loc != "START_OF_APP":
      print current_loc + '\t' + '\t'.join(govt_regains)
    current_loc = loc
    govt_regains = []
  if event_type.find('regains') != -1:
      govt_regains.append(event_date)
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4. Run the shell script from the local working directory, which should contain all of the 
Python scripts that we created previously:

./run_location_regains.sh

You should see the job start from the command line and finish successfully:

INFO streaming.StreamJob: Output: /output/acled_analytic_out

How it works...
The shell script sets up the Hadoop Streaming JAR path and passes the necessary arguments 
to the program. Each argument is explained in detail as follows:

Argument Description
-input /input/acled_cleaned/
Nigeria_ACLED_cleaned.tsv \

The HDFS path to the input data for 
MapReduce.

-output /output/acled_analytic_
out \

The HDFS path for MapReduce to write the 
job output.

-mapper location_regains_mapper.
py \

Script to be run as the map function; records 
passed via STDIN/STDOUT.

-reducer location_regains_by_
time.py \

Script to be run as the reduce function.

-file location_regains_by_time.
py \

Add a file to the distributed cache. This is 
required for external scripts.

-file location_regains_mapper.
py \

Add a file to the distributed cache.

-jobconf stream.num.map.output.
key.fields=2 \

Tells the streaming tool which field/fields 
should be treated as the map output key. 
Our mapper outputs three fields per record. 
This parameter tells the program to treat the 
first two as the key. This will leverage the 
secondary sort feature in MapReduce to sort 
our rows based on the composite of these 
two fields.

-jobconf map.output.key.field.
separator=\t \

Parameter for setting the delimiter token on 
the key.

-jobconf num.key.fields.for.
partition=1 \

Guarantees that all of the map output records 
with the same value in the first field of the 
key are sent to the same reducer.

-jobconf mapred.reduce.tasks=1 Number of JVM tasks to reduce over the 
output keys.
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The Python script used in the map phase gets a line corresponding to each record. We call 
strip() to remove any leading/trailing whitespace and then split the line on tabs. The result 
is an array of variables descriptively named to the row fields they hold.

The event_date field in the raw input requires some processing. In order for the framework 
to sort records in ascending order of dates, we want to take the current form, which is dd/
mm/yy and convert it to yyyy-mm-dd. Since some of the events occurred before the year 
2000, we need to expand the year variable out to four digits. Single-digit days and months  
are zero-padded, so that it sorts correctly.

This analytics only requires location, event_date, and event_type to be output to the 
reduce stage. In the shell script, we specified the first two fields as the output key. Specifying 
location as the first field groups all records with the same location on a common reducer. 
Specifying event_date as the second field allows the MapReduce framework to sort the 
records by the composite of location and event_date. The value in each key-value pair  
is simply of the event_type field.

Sample map output:

(cityA, 2010-08-09, explosion)
(cityB, 2008-10-10, fire)
(cityA, 2009-07-03, riots)

Order reducer shows the records that are sorted on the composite value of location and 
event_date

(cityA, 2009-07-03, riots)
(cityA, 2010-08-09,explosion)
(cityB, 2008-10-10,fire)

Our configuration specifies only one reducer, so in this recipe all of the rows will partition to 
the same reduce Java Virtual Machine (JVM). If multiple reduce tasks are specified, cityA 
and cityB could be processed independently on separate reduce JVMs.

Understanding how the MapReduce framework sorts and handles the output of the 
location_regains_mapper.py file is important to determine how the reduce script works.

We use location_regains_by_time.py to iterate over the sorted collection of events per 
location, and aggregate events that match a particular type.

As the records were partitioned by location, we can assume that each partition will go to its 
own mapper. Furthermore, because we specified event_date as an additional sort column, 
we can make the assumption that the events corresponding to a given location are sorted by 
date in the ascending order. Now we are in a position to understand how the script works.
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The script must keep a track of when a loc input changes from the previous location. Such a 
change signifies that we are done processing the previous location, since they are all in sorted 
order. We initialize the current_loc flag to START_OF_APP. We also declare an empty array 
govt_regains to hold the dates of events we are interested in.

The program starts by processing each line into variables. If there is a change in loc and it is 
not the beginning of the application, we know to output the current govt_regains collection 
to standard out. The change means that we are done processing the previous location, and 
can safely write its collection of event dates out of the reducer.

If the incoming loc value is the same as current_loc, we know that the incoming event 
still corresponds to the location we are currently processing. We check to see if the event is  
of the type regains to show the government the regained territories in that region. If it 
matches that type, we add it to the current govt_regains collection. Since the incoming 
records are sorted by event_date, we are guaranteed that the records are inserted in 
govt_regains in the ascending order of dates.

The net result is a single part file that is output from the reducer with a list of locations in 
lexicographically sorted order. To the right-hand side of each location is a tab-separated 
sorted list of dates matching the occurrences of when the government regained territory  
in that location.

There's more...
Hadoop Streaming is a very popular component. The following are a few important  
additions to know:

Using Hadoop Streaming with any language that can read from 
stdin and write to stdout
You are not limited to just Python when working with Hadoop Streaming. Java classes, shell 
scripts, ruby scripts, and many other languages are frequently used to transition existing code 
and functionality into full-fledged MapReduce programs. Any language that can read stdin  
and write to stdout will work with Hadoop Streaming.

Using the –file parameter to pass additional required files for 
MapReduce jobs
Similar to normal MapReduce programs, you can pass additional dependencies over the 
distributed cache to be used in your applications. Simply add additional –file parameters. 
For example:

-file mapper.py \

-file wordlist.txt
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Using MultipleOutputs in MapReduce to 
name output files

A common request among MapReduce users is to control output file names to something 
other than part-*. This recipe shows how you can use the MultipleOutputs class to  
emit different key-value pairs to the same named file that you chose.

Getting ready
You will need to download the ip-to-country.txt dataset from the Packt website, 
http://www.packtpub.com/support, and place the file in HDFS.

How to do it...
Follow these steps to use MultipleOutputs:

1. Create a class named NamedCountryOutputJob and configure the  
MapReduce job:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.io.IOException;
import java.util.regex.Pattern;

public class NamedCountryOutputJob implements Tool{

http://www.packtpub.com/
http://www.packtpub.com/
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    private Configuration conf;
    public static final String NAME = "named_output";

    public static void main(String[] args) throws Exception {
        ToolRunner.run(new Configuration(), new 
NamedCountryOutputJob(), args);
    }
    public int run(String[] args) throws Exception {
        if(args.length != 2) {
            System.err.println("Usage: named_output <input> 
<output>");
            System.exit(1);
        }

        Job job = new Job(conf, "IP count by country to named 
files");
        job.setInputFormatClass(TextInputFormat.class);

        job.setMapperClass(IPCountryMapper.class);
        job.setReducerClass(IPCountryReducer.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        job.setJarByClass(NamedCountryOutputJob.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        return job.waitForCompletion(true) ? 1 : 0;

    }

    public void setConf(Configuration conf) {
        this.conf = conf;
    }

    public Configuration getConf() {
        return conf;
    }
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2. Create a mapper to emit the key-value pair country, and the number 1:
public static class IPCountryMapper
            extends Mapper<LongWritable, Text, Text, IntWritable> 
{

        private static final int country_pos = 1;
        private static final Pattern pattern = Pattern.
compile("\\t");

        @Override
        protected void map(LongWritable key, Text value,
                           Context context)  throws IOException, 
InterruptedException {
            String country = pattern.split(value.toString())
[country_pos];
            context.write(new Text(country), new IntWritable(1));
        }
    }

3. Create a reducer that sums all of the country counts, and writes the output to 
separate files using MultipleOutputs:

public static class IPCountryReducer
            extends Reducer<Text, IntWritable, Text, IntWritable> 
{

        private MultipleOutputs output;

        @Override
        protected void setup(Context context
        ) throws IOException, InterruptedException {
            output = new MultipleOutputs(context);
        }

        @Override
        protected void reduce(Text key, Iterable<IntWritable> 
values, Context context) throws IOException, InterruptedException 
{
            int total = 0;
            for(IntWritable value: values) {
                total += value.get();
            }
           output.write(new Text("Output by MultipleOutputs"), 
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                         NullWritable.get(), key.toString());
            output.write(key, new IntWritable(total), key.
toString());
        }

        @Override
        protected void cleanup(Context context
        ) throws IOException, InterruptedException {
            output.close();
        }
    }

Once the job completes successfully, you should see named output files under the provided 
output directory (for example, Qatar-r-#####, Turkey-r-#####).

How it works...
We first set up our job using the Tool interface provided by Hadoop. The run() method 
inside NamedCountryOutputJob checks that both input and output HDFS path directories 
are provided. In addition, both the mapper and reducer classes are set, and we configure the 
InputFormat to read lines of text.

The mapper class defines a statically initialized position to read the country from each line,  
as well as the regex pattern to split each line. The mapper will output the country as the key 
and 1 for every line it appears on.

At the reduce phase, each task JVM runs the setup() routine and initializes a 
MultipleOutputs instance named output.

Each call to reduce() presents a country and a tally of every occurrence of the country 
appearing in the dataset. We sum the tally into a final count. Before we emit the final count, 
we will use the output instance to write a header to the file. The key contains the text for the 
header Output by MultipleOutputs, and we null out the value since we don't need 
it. We specify key.toString() to write the header to a custom file named by the current 
country. On the next line we call output.write() again, except this time with the input key 
as the output key, the final count as the output value, and the key.toString() method to 
specify the same output file as the previous output.write() method.

The end result is a named country file containing both the header and the final tallied count 
for that country.

By using MultipleOutputs, we don't have to configure an OutputFormat class in our job 
setup routine. Also, we are not limited to just one concrete type for the reducer output key 
and value. We were able to output key-value pairs for both Text/NullWritable and Text/
IntWritable to the exact same file.
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Creating custom Hadoop Writable and 
InputFormat to read geographical event data

When reading input, or writing output from a MapReduce application, it is sometimes easier 
to work with data using an abstract class instead of the primitive Hadoop Writable classes 
(for example, Text and IntWritable). This recipe demonstrates how to create a custom 
Hadoop Writable and InputFormat that can be used by MapReduce applications.

Getting ready
You will need to download the Nigeria_ACLED_cleaned.tsv dataset from  
http://www.packtpub.com/support and place the file into HDFS.

How to do it...
Follow these steps to create custom InputFormat and Writable classes:

1. First we will define two custom WritableComparable classes. These classes 
represent the key-value pairs that are passed to the mapper, much as how 
TextInputFormat passes LongWritable and Text to the mapper.

Write the key class:

public class GeoKey implements WritableComparable {
    private Text location;
    private FloatWritable latitude;
    private FloatWritable longitude;
    public GeoKey() {
        location = null;
        latitude = null;
        longitude = null;
    }

    public GeoKey(Text location, FloatWritable latitude, 
      FloatWritable longitude) {
        this.location = location;
        this.latitude = latitude;
        this.longitude = longitude;
    }

    //...getters and setters

http://www.packtpub.com/support
http://www.packtpub.com/support
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    public void readFields(DataInput di) throws IOException {
        if (location == null) {
            location = new Text();
        }
        if (latitude == null) {
            latitude = new FloatWritable();
        }
        if (longitude == null) {
            longitude = new FloatWritable();
        }
        location.readFields(di);
        latitude.readFields(di);
        longitude.readFields(di);
    }
    public int compareTo(Object o) {
        GeoKey other = (GeoKey)o;
        int cmp = location.compareTo(other.location);
        if (cmp != 0) {
            return cmp;
        }
        cmp = latitude.compareTo(other.latitude);
        if (cmp != 0) {
            return cmp;
        }
        return longitude.compareTo(other.longitude);
    }    
    
}

2. Now, the value class:
public class GeoValue implements WritableComparable {
    private Text eventDate;
    private Text eventType;
    private Text actor;
    private Text source;
    private IntWritable fatalities;
    
    public GeoValue() {
        eventDate = null;
        eventType = null;
        actor = null;
        source = null;
        fatalities = null;
    }
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    //...getters and setters

    public void write(DataOutput d) throws IOException {
        eventDate.write(d);
        eventType.write(d);
        actor.write(d);
        source.write(d);
        fatalities.write(d);
    }

    public void readFields(DataInput di) throws IOException {
        if (eventDate == null) {
            eventDate = new Text();
        }
        if (eventType == null) {
            eventType = new Text();
        }
        if (actor == null) {
            actor = new Text();
        }
        if (source == null) {
            source = new Text();
        }
        if (fatalities == null) {
            fatalities = new IntWritable();
        }
        eventDate.readFields(di);
        eventType.readFields(di);
        actor.readFields(di);
        source.readFields(di);
        fatalities.readFields(di);
    }

    public int compareTo(Object o) {
        GeoValue other = (GeoValue)o;
        int cmp = eventDate.compareTo(other.eventDate);
        if (cmp != 0) {
            return cmp;
        }
        cmp = eventType.compareTo(other.eventType);
        if (cmp != 0) {
            return cmp;
        }
        cmp = actor.compareTo(other.actor);
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        if (cmp != 0) {
            return cmp;
        }
        cmp = source.compareTo(other.source);
        if (cmp != 0) {
            return cmp;
        }
        return fatalities.compareTo(other.fatalities);
    }
    
}

3. Next, we need to create an InputFormat to serialize the text from our input file and 
create the GeoKey and GeoValue instances. This input format extends the Hadoop 
FileInputFormat class and returns our own implementation of a RecordReader:
public class GeoInputFormat extends FileInputFormat<GeoKey, 
GeoValue> {

    @Override
    public RecordReader<GeoKey, GeoValue> 
createRecordReader(InputSplit split, TaskAttemptContext context) {
        return new GeoRecordReader();
    }
    
    @Override
    protected boolean isSplitable(JobContext context, Path file) {
        CompressionCodec codec =
                new CompressionCodecFactory(context.
getConfiguration()).getCodec(file);
        return codec == null;
    }
}

4. Now, create a RecordReader to read from the Nigeria_ACLED_cleaned.tsv 
dataset:
public class GeoRecordReader extends RecordReader<GeoKey, 
GeoValue> {

    private GeoKey key;
    private GeoValue value;
    private LineRecordReader reader = new LineRecordReader();
    @Override
    public void initialize(InputSplit is, TaskAttemptContext tac) 
throws IOException, InterruptedException {
        reader.initialize(is, tac);
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    }

    @Override
    public boolean nextKeyValue() throws IOException, 
InterruptedException {
       
        boolean gotNextKeyValue = reader.nextKeyValue();
        if(gotNextKeyValue) {
            if (key == null) {
                key = new GeoKey();
            }
            if (value == null) {
                value = new GeoValue();
            }
            Text line = reader.getCurrentValue();
            String[] tokens = line.toString().split("\t");
            key.setLocation(new Text(tokens[0]));
            key.setLatitude(new FloatWritable(Float.
parseFloat(tokens[4])));
            key.setLongitude(new FloatWritable(Float.
parseFloat(tokens[5])));
            
            value.setActor(new Text(tokens[3]));
            value.setEventDate(new Text(tokens[1]));
            value.setEventType(new Text(tokens[2]));
            try {
                value.setFatalities(new IntWritable(Integer.
parseInt(tokens[7])));
            } catch(NumberFormatException ex) {
                value.setFatalities(new IntWritable(0));
            }
            value.setSource(new Text(tokens[6]));
        }
        else {
            key = null;
            value = null;
        }
        return gotNextKeyValue;
    }

    @Override
    public GeoKey getCurrentKey() throws IOException, 
InterruptedException {
        return key;
    }
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    @Override
    public GeoValue getCurrentValue() throws IOException, 
InterruptedException {
        return value;
    }
    @Override
    public float getProgress() throws IOException, 
InterruptedException {
        return reader.getProgress();
    }
    @Override
    public void close() throws IOException {
        reader.close();
    }
    
}

5. Finally, create a simple map-only job to test the InputFormat:

public class GeoFilter extends Configured implements Tool {
    
    public static class GeoFilterMapper extends Mapper<GeoKey, 
GeoValue, Text, IntWritable> {
        @Override
        protected void map(GeoKey key, GeoValue value, Context 
context) throws IOException, InterruptedException {
            String location = key.getLocation().toString();
            if (location.toLowerCase().equals("aba")) {
                context.write(value.getActor(), 
                  value.getFatalities());
            }
        }
    }
    
    public int run(String[] args) throws Exception {
        
        Path inputPath = new Path(args[0]);
        Path outputPath = new Path(args[1]);
        
        Configuration conf = getConf();
        Job geoJob = new Job(conf);
        geoJob.setNumReduceTasks(0);
        geoJob.setJobName("GeoFilter");
        geoJob.setJarByClass(getClass());
        geoJob.setMapperClass(GeoFilterMapper.class);    
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        geoJob.setMapOutputKeyClass(Text.class);
        geoJob.setMapOutputValueClass(IntWritable.class);
        geoJob.setInputFormatClass(GeoInputFormat.class);
        geoJob.setOutputFormatClass(TextOutputFormat.class);
        
        FileInputFormat.setInputPaths(geoJob, inputPath);
        FileOutputFormat.setOutputPath(geoJob, outputPath);
       
        if(geoJob.waitForCompletion(true)) {
            return 0;
        }
        return 1;
    }
    
    public static void main(String[] args) throws Exception {
        int returnCode = ToolRunner.run(new GeoFilter(), args);
        System.exit(returnCode);
    }
}

How it works...
The first task was to define our own Hadoop key and value representations by  
implementing the WritableComparable interface. The WritableComparable  
interface allows us to create our own abstract types, which can be used as keys or  
values by the MapReduce framework.

Next, we created an InputFormat that inherits from the FileInputFormat class.  
The Hadoop FileInputFormat is the base class for all file-based InputFormats. The 
InputFormat takes care of managing the input files for a MapReduce job. Since we do not 
want to change the way in which our input files are split and distributed across the cluster,  
we only need to override two methods, createRecordReader() and isSplitable().

The isSplitable() method is used to instruct the FileInputFormat class that it is 
acceptable to split up the input files if there is a codec available in the Hadoop environment 
to read and split the file. The createRecordReader() method is used to create a Hadoop 
RecordReader that processes individual file splits and generates a key-value pair for the 
mappers to process.

After the GeoInputFormat class was written, we wrote a RecordReader to process 
the individual input splits and create GeoKey and GeoValue for the mappers. The 
GeoRecordReader class reused the Hadoop LineRecordReader class to read from  
the input split. When the LineRecordReader class completed reading a record from  
the Nigeria_ACLED_cleaned.tsv dataset, we created two objects. These objects  
are GeoKey and GeoValue, which are sent to the mapper.
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Performing Common 

Tasks Using Hive, Pig, 
and MapReduce

In this chapter we will cover:

 f Using Hive to map an external table over weblog data in HDFS

 f Using Hive to dynamically create tables from the results of a weblog query

 f Using the Hive string UDFs to concatenate fields in weblog data

 f Using Hive to intersect weblog IPs and determine the country

 f Generating n-grams over news archives using MapReduce

 f Using the distributed cache in MapReduce to find lines that contain matching 
keywords over news archives

 f Using Pig to load a table and perform a SELECT operation with GROUP BY

Introduction
When working with Apache Hive, Pig, and MapReduce, you may find yourself having  
to perform certain tasks frequently. The recipes in this chapter provide solutions for  
executing several very common routines.

You will find that these tools let you solve the same problems in numerous different ways. 
Deciding on the right implementation can be a difficult task. The recipes presented here  
were designed for coding efficiency and clarity.
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Hive and Pig provide a clean abstraction layer between your data flow and meaningful  
queries, and the complex MapReduce workflows they compile to. You can leverage the power 
of MapReduce for scalable queries without having to think about the underlying MapReduce 
semantics. Both tools handle the decomposition and building of your expressions into the 
proper MapReduce sequences. Hive lets you build analytics and manage data using a 
declarative, SQL-like dialect known as HiveQL. Pig operations are written in Pig Latin and  
take a more imperative form.

Using Hive to map an external table over 
weblog data in HDFS

You will often want to create tables over existing data that does not live within the managed 
Hive warehouse in HDFS. Creating a Hive external table is one of the easiest ways to handle 
this scenario. Queries from the Hive client will execute as they normally do over internally 
managed tables.

Getting ready
Make sure you have access to a pseudo-distributed or fully-distributed Hadoop cluster,  
with Apache Hive 0.7.1 installed on your client machine and on the environment path for the 
active user account. This recipe depends on having the weblog_entries dataset loaded 
into an HDFS directory at the absolute path /input/weblog/weblog_records.txt.

How to do it...
Carry out the following steps to map an external table in HDFS:

1. Open a text editor of your choice, ideally one with SQL syntax highlighting. I have  
used the Textmate text editor for this recipe.

2. Add the CREATE TABLE syntax, as follows:
DROP TABLE IF EXISTS weblog_entries;
CREATE EXTERNAL TABLE weblog_entries (
      md5 STRING,
      url STRING,
      request_date STRING,
      request_time STRING,
      ip STRING
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY 
'\n'
LOCATION '/input/weblog/';
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3. Save the script as weblog_create_external_table.hsql in the working 
directory.

4. Run the script from the operating system shell by supplying the –f option to the  
Hive client, as follows:
hive –f weblog_create_external_table.hql

5. You should see two successful commands issued to the Hive client.

OK

Time taken: 2.654 seconds

OK

Time taken: 0.473 seconds

How it works...
The existing definition of the table weblog_entries is deleted if it already exists. Following 
this, the script issues a CREATE command with the EXTERNAL keyword, which tells the Hive 
Metastore that the data is not managed by the Hive warehouse in HDFS.

The table is defined as having five fields per entry. The MD5 of the URL, the URL itself, the 
date of the request, the exact time of the request, and the IP address that the request was 
associated with.

ROW FORMAT DELIMITED uses the native Hive SerDe, which is Hive's extensible and internal 
serialization/deserialization mechanism for reading and writing raw data. We explicitly tell 
the SerDe that a tab character separates each field and a newline character separates each 
record. The LOCATION keyword is required by Hive when creating an external table. It points 
to the HDFS directory that contains the table data using an absolute path.

There's more...
There are a few handy tips that you need to know when working with external tables.

LOCATION must point to a directory, not a file
As of Hive release 0.7.1, the LOCATION keyword requires an absolute path to a directory  
in HDFS.

Dropping an external table does not delete the data stored in  
the table
Unlike a managed table in Hive, the DROP command only deletes the table entry from  
the Metastore and not the physical data in HDFS. Other applications that depend on data 
stored in the supplied HDFS directory will continue to operate normally.
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You can add data to the path specified by LOCATION
If new data is inserted into a directory specified in an external table's LOCATION attribute,  
the data will be visible to any subsequent queries performed on the table.

Using Hive to dynamically create tables 
from the results of a weblog query

This recipe will outline a shorthand technique for inline table creation when the query is 
executed. Having to create every table definition up front is impractical and does not scale  
for large ETL. Being able to dynamically define intermediate tables is tremendously useful  
for complex analytics with multiple staging points.

In this recipe, we will create a new table that contains three fields from the weblog entry 
dataset, namely request_date, request_time, and url. In addition to this, we will  
define a new field called url_length.

Getting ready
Make sure you have access to a pseudo-distributed or fully-distributed Hadoop cluster,  
with Apache Hive 0.7.1 installed on your client machine and on the environment path for  
the active user account.

This recipe depends on having the weblog_entries dataset loaded into Hive table  
named weblog_entries with the following fields mapped to the respective datatypes.

Issue the following command to the Hive client:

describe weblog_entries

You should see the following response:

OK

md5 string

url string

request_date string

request_time string

ip string

How to do it...
Carry out the following steps to create an inline table definition using an alias:

1. Open a text editor of your choice, ideally one with SQL syntax highlighting.
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2. Add the following inline creation syntax:
CREATE TABLE weblog_entries_with_url_length AS
SELECT url, request_date, request_time, length(url) as url_length 
FROM weblog_entries;

3. Save the script as weblog_entries_create_table_as.hql in the active 
directory.

4. Run the script from the operating system shell by supplying the –f option to the Hive 
client, as follows:
hive –f weblog_create_table_as.hql

5. To verify that the table was created successfully, issue the following command to the 
Hive client directly, using the –e option:
hive –e "describe weblog_entries_with_url_length"

6. You should see a table with three string fields and a fourth int field holding the 
URL length:

OK

url string

request_date string

request_time string

url_length int

How it works...
The following statement initially defines a new table by the name weblog_entries_with_
url_length:

CREATE TABLE weblog_entries_with_url_length AS

We then define the body of this table as an alias to the result set of a nested SELECT 
statement. In this case, our SELECT statement simply grabs the url, request_date, and 
request_time fields from each entry in the weblog_entries table. The field names are 
copied as field names to our new table weblog_entires_with_url_length. We also 
defined an additional field aliased as url_length to be calculated for each selected record. 
It stores an int value that represents the number of characters in the record's url field.

SELECT url, request_date, request_time, length(url) as url_length FROM 
weblog_entries;

In one simple statement, we created a table with a subset of fields from our starting table, as 
well as a new derived field.
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There's more...
The following are a few reminders for when using external tables:

CREATE TABLE AS cannot be used to create external tables
As of Apache Hive 0.7.1, you cannot create external tables using aliases with  
SELECT statements.

DROP temporary tables
The ease of the CREATE TABLE AS syntax lets Hive users create new tables very quickly, 
but don't forget to DROP any temporary tables. If you are scripting the CREATE ALIAS 
for repeated use, the next execution, especially, will fail if there are table name conflicts. 
Moreover, such intermediate tables will create a warehouse namespace that will quickly 
become unmanageable.

Using the Hive string UDFs to concatenate 
fields in weblog data

String concatenation is a very common operation in any development task. It frequently 
comes up when using Hive for report generation and even simple ETL tasks. This recipe  
will show a very basic and useful example using one of the Hive string concatenation UDFs.

In this recipe, we will take the separate request_date and request_time fields from  
the weblog_entries and print a single concatenated column to the console for every 
record, containing both the request_date and request_time fields separated by  
an underscore (_).

Getting ready
Make sure you have access to a pseudo-distributed or fully-distributed Hadoop cluster,  
with Apache Hive 0.7.1 installed on your client machine and on the environment path for  
the active user account.

This recipe depends on having the weblog_entries dataset loaded into a Hive table  
named weblog_entries with the following fields mapped to the respective datatypes.

Issue the following command to the Hive client:

describe weblog_entries
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You should see the following response:

OK

md5 string

url string

request_date string

request_time string

ip string

How to do it...
Carry out the following steps to perform string concatenation in HiveQL:

1. Open a text editor of your choice, ideally one with SQL syntax highlighting.

2. Add the following inline creation syntax:
SELECT concat_ws('_', request_date, request_time) FROM weblog_
entries;

3. Save the script as weblog_concat_date_time.hql in the active directory.

4. Run the script from the operating system shell by supplying the –f option to the 
Hive client. You should see the results of the SELECT statement printed out to the 
console. The following snippet is an example that contains only two sample rows.  
The full printout will contain all 3000 rows.

2012-05-10_21:33:26
2012-05-10_21:13:10

How it works...
The script relies on the Hive built-in UDF to concatenate two strings together with a supplied 
separator token. For each row, it supplies the function with the respective request_date 
and request_time values that correspond to that row. The output of the function is a single 
string containing both the fields separated by an underscore (_). Since the SELECT statement 
consists of only that function, and the function outputs just a single string, we see a single 
column for all 3000 rows, one printed per line.

There's more...
The following are a few additional notes to help with the concat_ws() function:
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The UDF concat_ws() function will not automatically cast 
parameters to String
If you pass non-string datatypes as parameters to concat_ws(), you will be greeted with  
a very descriptive error message:

FAILED: Error in semantic analysis: Line 1:21 Argument type mismatch 
field1: Argument 2 of function CONCAT_WS must be "string", but "int" 
was found.

If you wish to encapsulate the auto-casting of your parameters to string, use the regular 
concat() function.

Alias your concatenated field
Like most Hive UDFs, you can alias the output of concat_ws(). This comes in handy if you 
are persisting the results of the concatenation and want a very descriptive column header.

The concat_ws() function supports variable length parameter 
arguments
When using concat_ws(), you must, at the very least, supply the separator character first 
and one input string parameter to be printed out. However, you are not limited in the number 
of input string parameters that you can supply to be concatenated and separated.

The following usage is valid:

concat_ws('_','test')

The following output will be printed to the console:

test

The following usage of the concat_ws() function is also valid:

concat_ws('_','hi','there','my','name','is')

The following output will be printed to the console:

hi_there_my_name_is

See also
 f The following recipes in Chapter 6, Big Data Analysis:

 � Using Hive date UDFs to transform and sort event dates from geographic 
event data

 � Using Hive to build a per-month report of fatalities over geographic  
event data
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Using Hive to intersect weblog IPs and 
determine the country

Hive does not directly support foreign keys. Nevertheless, it is still very common to join 
records on identically matching keys contained in one or more tables. This recipe will show 
a very simple inner join over weblog data that links each request record in the weblog_
entries table to a country, based on the request IP.

For each record contained in the weblog_entries table, the query will print the record  
out with an additional trailing value showing the determined country.

Getting ready
Make sure that you have access to a pseudo-distributed or fully-distributed Hadoop cluster, 
with Apache Hive 0.7.1 installed on your client machine and on the environment path for the 
active user account.

This recipe depends on having the weblog_entries dataset loaded into a Hive table  
named weblog_entries with the following fields mapped to the respective datatypes.

Issue the following command to the Hive client:

describe weblog_entries

You should see the following response:

OK

md5 string

url string

request_date string

request_time string

ip string

Additionally, this recipe requires that the ip-to-country dataset be loaded into a Hive  
table named ip_to_country with the following fields mapped to the respective datatypes.

Issue the following command to the Hive client:

describe ip_to_country

You should see the following response:

OK

Ip string

country string



Performing Common Tasks Using Hive, Pig, and MapReduce

114

How to do it...
Carry out the following steps to perform an inner join in HiveQL:

1. Open a text editor of your choice, ideally one with SQL syntax highlighting.

2. Add the following inline creation syntax:
SELECT wle.*, itc.country FROM weblog_entries wle
    JOIN ip_to_country itc ON wle.ip = itc.ip;

3. Save the script as weblog_simple_ip_join.hql in the active directory.

4. Run the script from the operating system shell by supplying the –f option to the 
Hive client. You should see the results of the SELECT statement printed out to the 
console. The following snippet is a printout containing only two sample rows. The full 
printout will contain all 3000 rows:

11402ba8f780f7fbfb108f213449e1b9  /u.html  2012-05-10  21:19:05  
98.90.200.33 United States
7ffb8f8ed136c5fe3a5dd6eedc32eae7  /cx.html  2012-05-10  21:17:05  
59.19.27.24  Korea, Republic of

How it works...
The statement SELECT wle.* tells Hive to print every column for each record contained  
in the table weblog_entires, which is an alias for wle in shorthand.

Additionally, the JOIN operator tells Hive to perform a lookup in the ip_to_country table 
for each record, and find the specific country that maps to that weblog record's IP address.  
In other words, our join key is the IP address contained in both the tables.

There's more...
The following are a few more helpful introductory tips for the Hive JOIN syntax.

Hive supports multitable joins
A single SELECT statement can use multiple instances of the JOIN <table> ON syntax  
to match the conditions contained in multiple tables.

The ON operator for inner joins does not support  
inequality conditions
As of Hive 0.7.1, ON conditions cannot match records based on inequality.

The same query from the recipe will fail once the conditional operator is changed to inequality.
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The following is the same query from the recipe, except that we wish to match every record for 
which the IP does not match an IP in the JOIN table:

SELECT wle.*, itc.country FROM weblog_entries wle
    JOIN ip_to_country itc ON wle.ip != itc.ip;

This query produces the following error:

FAILED: Error in semantic analysis: Line 2:30 Both left and right 
aliases encountered in JOIN ip

See also
This recipe is designed as a quick reference for simple table joins. More advanced Hive joins 
are covered in depth in the following recipes of Chapter 5, Advanced Joins:

 f Joining data in the Mapper using MapReduce

 f Joining data using Apache Pig replicated join

 f Join sorted data using Apache Pig merge join

 f Using a map-side join in Apache Hive to analyze geographical events

Generating n-grams over news archives 
using MapReduce

n-gram analysis is one approach for looking at blocks of free text that analyze contiguous 
words (grams) together in a sequence. This recipe will demonstrate how to use the Java 
MapReduce API to calculate n-grams over news archives. Some of the code listed in this 
recipe will be useful across a variety of different MapReduce jobs. It includes code for the 
ToolRunner setup, custom parameter passing via configuration, and automatic output 
directory removal before job submission.

Getting ready
This recipe assumes you have a basic familiarity with the Hadoop 0.20 MapReduce API and 
the general concept of n-gram calculations. You will need access to the news_archives.
zip dataset supplied with this book. Inside the ZIP file, you will find the rural.txt and 
science.txt files. Place both in a single HDFS directory.

You will need access to a pseudo-distributed or fully-distributed cluster capable of running 
MapReduce jobs using the newer MapReduce API introduced in Hadoop 0.20.

You will also need to package this code inside a JAR file that is to be executed by the Hadoop 
JAR launcher from the shell. Only the core Hadoop libraries are required to compile and run 
this example.
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How to do it...
Carry out the following steps to implement n-gram in MapReduce:

1. Create a class named NGram.java in your JAR file at whatever source package  
is appropriate.

2. The first step involves creating your concrete Tool class for job submission.  
The methods are implemented as follows:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.io.IOException;
import java.util.regex.Pattern;

public class NGramJob implements Tool{

    private Configuration conf;

    public static final String NAME = "ngram";
    private static final String GRAM_LENGTH =     "number_of_
grams";

    public void setConf(Configuration conf) {
        this.conf = conf;
    }

    public Configuration getConf() {
        return conf;
    }
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    public static void main(String[] args) throws Exception {
         if(args.length != 3) {
             System.err.println("Usage: ngram <input> <output>               
          <number_of_grams>");
             System.exit(1);
         }
        ToolRunner.run(new NGramJob(new Configuration()), args);
    }
    public NGramJob(Configuration conf) {
        this.conf = conf;
    }

3. The run() method is where we set the input/output formats, mapper class 
configuration, and key-value class configuration:
    public int run(String[] args) throws Exception {
        conf.setInt(GRAM_LENGTH, Integer.parseInt(args[2]));

        Job job = new Job(conf, "NGrams");
        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);
        job.setMapperClass(NGramJob.NGramMapper.class);
        job.setNumReduceTasks(0);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);
        job.setJarByClass(NGramJob.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, 
removeAndSetOutput(args[1]));

        return job.waitForCompletion(true) ? 1 : 0;
    }

4. The removeAndSetOutput() method is not required, but helps circumvent 
previously existing directories that have errors at the mentioned path:
    private Path removeAndSetOutput(String outputDir) throws 
IOException {

        FileSystem fs = FileSystem.get(conf);

        Path path = new Path(outputDir);

        fs.delete(path, true);

        return path;

    }
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5. The map() function is implemented in the following code snippet by extending 
mapreduce.Mapper:

    public static class NGramMapper extends Mapper<LongWritable, 
Text, Text, NullWritable> {

        private int gram_length;
        private Pattern space_pattern = Pattern.compile("[ ]");
        private StringBuilder gramBuilder = new StringBuilder();

        @Override
        protected void setup(Context context) throws IOException, 
InterruptedException {
           gram_length = context.getConfiguration().
getInt(NGramJob.GRAM_LENGTH, 0);
        }

        @Override
        protected void map(LongWritable key, Text value,
                           Context context) throws IOException, 
InterruptedException {
            String[] tokens = space_pattern.split(value.
toString());
            for (int i = 0; i < tokens.length; i++) {
                String token = tokens[i];
                gramBuilder.setLength(0);
                if(i + gram_length <= tokens.length) {
                   for(int j = i; j < i + gram_length; j++) {
                       gramBuilder.append(tokens[j]);
                       gramBuilder.append(" ");
                   }
                   context.write(new Text(gramBuilder.toString()), 
NullWritable.get());
                }
            }

        }

    }
}
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How it works...
First, we set up our imports and create a public class named NGram that implements the 
MapReduce Tool interface. The static string NAME is useful, should you decide to configure 
this job in a Hadoop Driver implementation. The NGram program requires three parameters 
in exact order, namely the input path in HDFS, the desired output location in HDFS, and 
the total number of grams to be calculated per token. We pass the ToolRunner with an 
instance of the NGramJob class, as well as a Configuration object initialized with the 
aforementioned parameters.

Inside the run() method, we configure the job to accept TextInputFormat and 
TextOutputFormat to read the input as lines of text, and write lines of text out from the 
map phase. We are also required to set the Mapper class to the public static inner class 
NGramMapper. Since this is a map-only job, we set the number of reducers to zero. Then we 
set the parameterized Writable types for the key-value pairs out of the mapper. It's also 
very important to call the setJarByClass() method so the TaskTrackers can properly 
unpack and find the Mapper and Reducer classes. The job uses the static helper methods 
on FileInputFormat and FileOutputFormat to set the input and output directories 
respectively. Since the output directory cannot exist, the program first deletes any previously 
defined HDFS files or directories located at the supplied path. With everything configured 
properly, the job is now ready for submission to the JobTracker.

The NGramMapper class has a few very important member variables. The variable gram_
length is dereferenced from the job configuration, which was set before submission to the 
user-supplied argument. The variable space_pattern is statically compiled to perform a 
regex split on space characters. The StringBuilder instance gramBuilder is used to 
store the space-separated list of grams that correspond to each string token. The mapper 
receives line numbers as LongWritable instances and the line content as a Text instance. 
The function immediately splits the line into space-separated tokens. For each token, reset 
gramBuilder, and if that token's position on the line when summed with gram_length 
exceeds the total length in characters of the line, ignore it. Otherwise, iterate over and store 
each following token in gramBuilder until the loop reaches gram_length; then, output  
the gramBuilder content and cycle the outer loop to the next token. The net result is one  
or more part files stored in the directory specified by the user-supplied argument, which 
contains a line-separated list of n-grams in the news archives.

Sample output of bigrams (2 grams):

AWB has 
has been 
been banned 
banned from 
from trading
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There's more...
The following two sections discuss how to use NullWritable objects effectively, and  
also remind developers to use the HDFS filesystem delete functions with care.

Use caution when invoking FileSystem.delete()
The method removeAndSetPath() in this implementation automatically removes  
the directory string argument without warning. This method is supplied this parameter by  
the user-supplied output directory argument, which if reversed accidentally with the input 
argument, would remove the input directory. Although programmatically inserting this kind  
of behavior into a MapReduce setup routine is very handy, FileSystem.delete()  
should be used with extreme caution.

Use NullWritable to avoid unnecessary serialization overhead
This program makes use of NullWritable as the output value type from the mapper.  
Since the program writes a single gram per line, we can just use the key to emit all our  
output. If your MapReduce job does not require both the key and the value to be emitted, 
using NullWritable will save the framework the trouble of having to serialize unnecessary 
objects out to the disk. In many scenarios, it is often cleaner and more readable than using 
blank placeholder values or static singleton instances for output.

Using the distributed cache in MapReduce 
to find lines that contain matching keywords 
over news archives

The distributed cache in MapReduce is almost always required for any complex assignment 
involving dependent libraries and code. One very common operation is passing cache files for 
use in each map/reduce task JVM. This recipe will use the MapReduce API and the distributed 
cache to mark any lines in the news archive dataset that contain one or more keywords 
denoted in a list. We will use the distributed cache to make each mapper aware of the list 
location in HDFS.

Getting ready
This recipe assumes you have a basic familiarity with the Hadoop 0.20 MapReduce API. You 
will need access to the news_archives.zip dataset supplied with this book. Inside the 
ZIP file, you will find rural.txt and science.txt. Place both in a single HDFS directory. 
Additionally, inside the ZIP file you will find news_keywords.txt. You will need to place this 
file in an HDFS directory with the absolute path /cache_files/news_archives.txt.  
Feel free to add any additional words to this file, so long as they each appear on a new line.
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You will need access to a pseudo-distributed or fully-distributed cluster capable of running 
MapReduce jobs using the newer MapReduce API introduced in Hadoop 0.20.

You will also need to package this code inside a JAR file that is to be executed by the Hadoop 
JAR launcher from the shell. Only the core Hadoop libraries are required to compile and run 
this example.

How to do it...
Carry out the following steps to implement a word-matching MapReduce job:

1. Create a class named LinesWithMatchingWordsJob.java in your JAR file  
at whatever source package is appropriate.

2. The following code will serve as the Tool implementation for job submission:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.HashSet;
import java.util.Set;
import java.util.regex.Pattern;

public class LinesWithMatchingWordsJob implements Tool {
    private Configuration conf;

    public static final String NAME = "linemarker";

    public void setConf(Configuration conf) {
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        this.conf = conf;
    }

    public Configuration getConf() {
        return conf;
    }

    public static void main(String[] args) throws Exception {
        if(args.length != 2) {
             System.err.println("Usage: linemarker <input> 
<output>");
             System.exit(1);
        }
        ToolRunner.run(new LinesWithMatchingWordsJob(    new 
Configuration()), args);
    }

    public LinesWithMatchingWordsJob(Configuration conf) {
        this.conf = conf;
    }

3. The run() method is where we set the input/output formats, mapper class 
configuration, and key-value class configuration:
    public int run(String[] args) throws Exception {

        DistributedCache.addCacheFile(new Path("/cache_files/news_
keywords.txt").toUri(), conf);

        Job job = new Job(conf, "Line Marker");
        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);
        job.setMapperClass(LineMarkerMapper.class);
        job.setNumReduceTasks(0);
        job.setOutputKeyClass(LongWritable.class);
        job.setOutputValueClass(Text.class);
        job.setJarByClass(LinesWithMatchingWordsJob.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job,new Path(args[1]));

        return job.waitForCompletion(true) ? 1 : 0;
    }
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4. The map() function is implemented in the following code snippet by extending 
mapreduce.Mapper:
    public static class LineMarkerMapper extends 
Mapper<LongWritable, Text, LongWritable, Text> {

        private Pattern space_pattern = Pattern.compile("[ ]");
        private Set<String> keywords = new HashSet<String>();

5. Inside the setup() routine, we must load and write the file to a local disk from the 
distributed cache:

        @Override
        protected void setup(Context context) throws IOException, 
InterruptedException {
            URI[] uris =DistributedCache.getCacheFiles(
             context.getConfiguration());
            FileSystem fs = 
                  FileSystem.get(context.getConfiguration());
            if(uris == null || uris.length == 0) {
               throw new IOException("Error reading file from 
                          distributed cache. No URIs found.");
            }
            String localPath = "./keywords.txt";
            fs.copyToLocalFile(new Path(uris[0]), new 
                               Path(localPath));
            BufferedReader reader = new BufferedReader(new 
                                    FileReader(localPath));
            String word = null;
            while((word = reader.readLine()) != null) {
                 keywords.add(word);
            }
        }

The map() function:

        @Override
        protected void map(LongWritable key, Text value,
                           Context context) throws 
                           IOException, InterruptedException {
            String[] tokens = 
                        space_pattern.split(value.toString());
            for(String token : tokens) {
                if(keywords.contains(token)) {
                    context.write(key, new Text(token));
                }
            }

        }

    }
}



Performing Common Tasks Using Hive, Pig, and MapReduce

124

How it works...
First, we set up our imports and create a public class LinesWithMatchingWordsJob.  
This class implements the Hadoop Tool interface for easy submission using the 
ToolRunner. Before the job is submitted, we first check for the existence of both input and 
output parameters. Inside the run() method, we immediately call the DistributedCache 
static helper method addCacheFile() and pass it a hardcoded reference to the HDFS 
cache file at the absolute path /cache_files/news_keywords.txt. This file contains 
the keywords, separated by newline characters, that we are interested in locating within 
the news archives corpus. We pass the helper method a URI reference to this path and the 
Configuration instance.

Now we can begin configuring the rest of the job. Since we are working with text, we will 
use the TextInputFormat and TextOutputFormat classes to read and write lines 
as strings. We will also configure the Mapper class to use the public static inner class 
LineMarkerMapper. This is a map-only job, so we set the number of reducers to zero. 
We also configure the output key type to be LongWritable for the line numbers and 
the output value as Text for the words, as we locate them. It's also very important to call 
setJarByClass() so that the TaskTrackers can properly unpack and find the Mapper 
and Reducer classes. The job uses the static helper methods on FileInputFormat and 
FileOutputFormat to set the input and output directories respectively. Now we  
are completely set up and ready to submit the job.

The Mapper class has two very important member variables. There is a statically compiled 
regex pattern used to tokenize each line by spaces, and a wordlist Set used to store each 
distinct word we are interested in searching for.

The setup() method in the Mapper is told to pull the complete list of cache file URIs currently 
in the distributed cache. We first check that the URI array returned a non-null value and that the 
number of elements is greater than zero. If the array passes these tests, grab the keywords file 
located in HDFS and write it to the temporary working directory for the task. Save the contents 
in a local file named ./keywords.txt. Now we are free to use the standard Java I/O classes 
to read/write off the local disk. Each line contained in the file denotes a keyword that we can 
store in the keywords' HashSet. Inside our map() function, we first tokenize the line by spaces, 
and for each token, we see if it's contained in our keyword list. If a match is found, emit the line 
number it was found on as the key and the token itself as the value.

There's more...
The following are a few additional tips to know when starting out with the distributed cache  
in MapReduce.
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Use the distributed cache to pass JAR dependencies to map/
reduce task JVMs
Very frequently, your map and reduce tasks will depend on third-party libraries that take the 
form of JAR files. If you store these dependencies in HDFS, you can use the static helper 
method DistributedCache.addArchiveToClassPath() to initialize your job with the 
dependencies and have Hadoop automatically add the JAR files as classpath dependencies 
for every task JVM in that job.

Distributed cache does not work in local jobrunner mode
If the configuration parameter mapred.job.tracker is set to local, the 
DistributedCache cannot be used to configure archives or cache files from HDFS.

Using Pig to load a table and perform a 
SELECT operation with GROUP BY

This recipe will use Pig to group the IP addresses contained in the ip_to_country dataset 
and count the number of IP addresses listed for each country.

Getting ready
Make sure you have access to a pseudo-distributed or fully-distributed Hadoop cluster with 
Apache Pig 0.9.2 installed on your client machine and on the environment path for the active 
user account. This recipe depends on having the ip-to-country named dataset included in 
the book loaded into HDFS at the absolute path /input/weblog_ip/ip_to_country.txt.

How to do it...
Carry out the following steps to perform a SELECT and GROUP BY operation in Pig:

1. Open a text editor of your choice, ideally one with SQL syntax highlighting.

2. Add the following inline creation syntax:
ip_countries = LOAD '/input/weblog_ip/ip_to_country.txt' AS  
(ip: chararray, country:chararray);
country_grpd = GROUP ip_countries BY country;
country_counts = FOREACH country_grpd GENERATE FLATTEN(group), 
COUNT(ip_countries) as counts;
STORE country_counts INTO '/output/geo_weblog_entries';

3. Save the file as group_by_country.pig.

4. In the directory containing the script, run the command line using the Pig client  
with the –f option.
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How it works...
The first line creates a Pig relation named ip_countries from the tab-delimited records 
stored in HDFS. The relation specifies two attributes, namely ip and country, both character 
arrays. The second line creates the country_grpd relation containing a record for each 
distinct country in the ip_countries relation. The third line tells Pig to iterate over the 
country_grpd relation and count the number of records in the ip_countries relation that 
map to the current country. The results of this iteration are persisted to a new relation named 
country_counts, which consists of tuples containing exactly two attributes, namely group 
and counts. Store the tuples contained in this relation to the output directory specified by /
output/geo_weblog_entries.

The output is not sorted in country in the ascending or descending order.

You should see in HDFS, under /output/geo_weblog_entries, one or more part files 
containing tab-delimited country listings and their IP address counts.

See also
 f The following recipes in Chapter 3, Extracting and Transforming Data

 � Using Apache Pig to filter bot traffic from web server logs

 � Using Apache Pig to sort web server logs data by timestamp

 f The Calculate cosine similarity of Artists in the Audioscrobbler dataset using Pig 
recipe in Chapter 6, Big Data Analysis



5
Advanced Joins

In this chapter, we will cover:

 f Joining data in the Mapper using MapReduce

 f Joining data using Apache Pig replicated join

 f Joining sorted data using Apache Pig merge join

 f Joining skewed data using Apache Pig skewed join

 f Using a map-side join in Apache Hive to analyze geographical events

 f Using optimized full outer joins in Apache Hive to analyze geographical events

 f Joining data using an external key-value store (Redis)

Introduction
In most processing environments, there will be a need to join multiple datasets to  
produce some final result. Unfortunately, joins in MapReduce are non-trivial and can be  
an expensive operation. This chapter will demonstrate different approaches to joining data  
in Hadoop using a number of tools, including Java MapReduce, Apache Pig, and Apache  
Hive. In addition, this chapter will demonstrate how to leverage external memory resources 
using Hadoop MapReduce.
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Joining data in the Mapper using MapReduce
Joining data in MapReduce is an expensive operation. Depending on the size of the datasets, 
you can choose to perform a map-side join or a reduce-side join. In a map-side join, two or 
more datasets are joined on a key in the map phase of a MapReduce job. In a reduce-side 
join, the mapper emits the join key, and the reduce phase is responsible for joining the two 
datasets. In this recipe we will demonstrate how to perform a map-side replicated join using 
Pig. We will join a weblog dataset, and a dataset containing a list of distinct IPs and their 
associated country. As the datasets will be joined in the map-phase, this will be a  
map-only job.

Getting ready
Download the apache_nobots_tsv.txt and nobots_ip_country_tsv.txt datasets 
from http://www.packtpub.com/support and place them into HDFS.

How to do it...
Carry out the following steps to join data in the map phase using MapReduce:

1. Set up a map-only MapReduce job that will load the nobots_ip_country_tsv.
txt dataset into the distributed cache:
public class MapSideJoin extends Configured implements Tool {
    
  public int run(String[] args) throws Exception {
  
    Path inputPath = new Path(args[0]);
    Path outputPath = new Path(args[1]);
    
    Configuration conf = getConf();
    DistributedCache.addCacheFile(new 
      URI("/user/hadoop/nobots_ip_country_tsv.txt"), conf);
    Job weblogJob = new Job(conf);
    weblogJob.setJobName("MapSideJoin");
    weblogJob.setNumReduceTasks(0);
    weblogJob.setJarByClass(getClass());
    weblogJob.setMapperClass(WeblogMapper.class);        
    weblogJob.setMapOutputKeyClass(Text.class);
    weblogJob.setMapOutputValueClass(Text.class);
    weblogJob.setOutputKeyClass(Text.class);
    weblogJob.setOutputValueClass(Text.class);
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    weblogJob.setInputFormatClass(TextInputFormat.class);
    weblogJob.setOutputFormatClass(TextOutputFormat.class);
    FileInputFormat.setInputPaths(weblogJob, inputPath);
    FileOutputFormat.setOutputPath(weblogJob, outputPath);
    
    
    if(weblogJob.waitForCompletion(true)) {
      return 0;
    }
    return 1;
  }
  
  public static void main( String[] args ) throws Exception {
    int returnCode = ToolRunner.run(new MapSideJoin(), args);
     System.exit(returnCode);
  }
}

2. Create a mapper to read the nobots_ip_country_tsv.txt dataset from the 
distributed cache, and store the IP/Country table into a HashMap.
public class WeblogMapper extends Mapper<Object, Text, Text, Text> 
{

  public static final String IP_COUNTRY_TABLE_FILENAME = 
    "nobots_ip_country_tsv.txt";
  private Map<String, String> ipCountryMap = new 
    HashMap<String, String>();
  
  private Text outputKey = new Text();
  private Text outputValue = new Text();
  
  @Override
  protected void setup(Context context) throws IOException,     
InterruptedException {
      Path[] files = DistributedCache.getLocalCacheFiles(context.
getConfiguration());
      for (Path p : files) {
        if (p.getName().equals(IP_COUNTRY_TABLE_FILENAME)) {
          BufferedReader reader = new BufferedReader(new 
FileReader(p.toString()));
          String line = reader.readLine();
          while(line != null) {
            String[] tokens = line.split("\t");



Advanced Joins

130

            String ip = tokens[0];
            String country = tokens[1];
            ipCountryMap.put(ip, country);
            line = reader.readLine();
          }
        }
      }
      
      if (ipCountryMap.isEmpty()) {
        throw new IOException("Unable to load IP country table.");
      }
    }

    @Override
    protected void map(Object key, Text value, Context      
context) throws IOException, InterruptedException {
        String row = value.toString();
        String[] tokens = row.split("\t");
        String ip = tokens[0];
        String country = ipCountryMap.get(ip);
        outputKey.set(country);
        outputValue.set(row);
        context.write(outputKey, outputValue);
    }
    
}

3. Run the job:

$ hadoop jar AdvJoinChapter5-1.0.jar com.packt.ch5.advjoin.
mr.MapSideJoin /user/hadoop/apache_nobots_tsv.txt /user/hadoop/
data_jnd

How it works...
In step 1, we called the following static method:

DistributedCache.addCacheFile(new URI("/user/hadoop/nobots_ip_country_
tsv.txt"), conf)



Chapter 5

131

This method will set the mapred.cache.files property in the job configuration. The 
mapred.cache.files property tells the MapReduce framework to distribute the nobots_
ip_country_tsv.txt file to every node in the cluster that will launch a mapper (and 
reducer if your job is configured to run reducers).

In step 2, we overrode the setup() method of the mapper. The setup() method is  
called by the MapReduce framework only once, prior to any calls to the map() method.  
The setup() method is an excellent place to perform any one-time initialization to the 
mapper class.

To read from the distributed cache, we used the static method DistributedCache.
getLocalCacheFiles(context.getConfiguration()) to get all of the files that have 
been placed, into the distributed cache. Next, we iterated over every file in the distributed 
cache, which was only one, and loaded the nobots_ip_country_tsv.txt dataset into  
a HashSet.

Finally, in the map() method, we used the HashSet loaded in the setup() method to join  
the nobots_ip_country_tsv.txt and the apache_nobots_tsv.txt files by emitting 
the country associated with every IP in the apache_nobots_tsv.txt file.

There's more...
The MapReduce framework also supports distributing archive files using the distributed 
cache. An archive file can be a ZIP file, GZIP file, or even a JAR file. Once the archives have 
been distributed to the task nodes, they will be decompressed automatically.

To add an archive to the distributed cache, simply use the addCacheArchive() static 
method of the DistributedCache class when configuring the MapReduce job:

        DistributedCache.addCacheArchive(new URI("/user/hadoop/nobots_
ip_country_tsv.zip"), conf);

See also
 f Joining data using Apache Pig replicated join

 f Joining sorted data using Apache Pig merge join

 f Joining skewed data using Apache Pig skewed join
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Joining data using Apache Pig replicated 
join

Apache Pig supports a number of advanced joins, including:

 f Reduce-side joins

 f Replicated joins

 f Merge joins

 f Skewed joins

The reduce-side join is the default implementation when you use Pig's JOIN operator. Pig 
also supports map-side joins when you specify the replicated or merge keyword. This 
recipe will demonstrate how to perform a map-side replicated join using Pig. We will join a 
weblog dataset, and a dataset containing a list of distinct IPs and their associated countries.

Getting ready
Download the apache_nobots_tsv.txt and nobots_ip_country_tsv.txt datasets 
from http://www.packtpub.com/support and place them into HDFS. You will also  
need a recent version of Apache Pig (0.9 or later) installed on the cluster.

How to do it...
Carry out the following steps to perform a replicated join in Apache Pig:

1. Open your favorite text editor and create a file named replicated_join.pig. 
Create two Pig relations to load the two datasets:
nobots_weblogs = LOAD '/user/hadoop/apache_nobots_tsv.txt' AS 
(ip: chararray, timestamp:long, page:chararray, http_status:int, 
payload_size:int, useragent:chararray);
ip_country_tbl = LOAD '/user/hadoop/nobots_ip_country_tsv.txt' AS 
(ip:chararray, country:chararray);

2. Join the two datasets using the replicated keyword:
weblog_country_jnd = JOIN nobots_weblogs BY ip, ip_country_tbl BY 
ip USING 'replicated';



Chapter 5

133

3. Format the joined relation and store the result:
cleaned = FOREACH weblog_country_jnd GENERATE ip_country_tbl::ip, 
country, timestamp, page, http_status, payload_size, useragent;
STORE cleaned  INTO '/user/hadoop/weblog_country_jnd_replicated';

4. Run the job:

$ pig –f replicated_join.pig

How it works...
In step 1, we defined two relations: nobots_weblogs and ip_country_tbl, to refer  
to the two input datasets. Next, we joined the two datasets on the ip field using Pig's 
replicated join. Pig will load the right-most relation, ip_country_tbl, into memory  
and will join the data with the nobots_weblogs relationship. It is important that the  
right-most relations be small enough to fit into a mapper's memory. Pig will not warn you  
if the dataset is too large, the job will just fail with an out of memory exception.

Finally, in step 3, we formatted the joined relation into a new relation named cleaned. 
There is one field that looks odd in the FOREACH statement, and that field is ip_country_
tbl::ip. We had to use the :: operator to define which column we wanted to store in the 
cleaned relation, since the joined relation contains two fields named ip. We could have 
easily chosen to use nobots_weblogs::ip instead; it makes no difference in this example.

There's more...
The replicated join can be used on more than one relation. For example, we can modify the 
previous recipe to use a replicated join to perform an inner join on three relations:

weblog_country_jnd = JOIN nobots_weblogs BY ip, ip_country_tbl BY ip, 
another_relation BY ip USING 'replicated';

Again, the right-most datasets must fit into the main memory. In this case, both ip_
country_tbl and another_relation must fit into the memory of a mapper.

See also
 f Joining sorted data using Apache Pig merge join

 f Joining skewed data using Apache Pig skewed join
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Joining sorted data using Apache Pig  
merge join

Like the replicated join described in the previous recipe, the Apache Pig's merge join 
is another map-side join technique. However, the major difference between the two 
implementations is that the merge join does not place any data into main memory.  
This recipe will demonstrate how to use Pig's merge join to join two datasets.

Getting ready
Download the apache_nobots_tsv.txt and nobots_ip_country_tsv.txt datasets 
from http://www.packtpub.com/support and place them into the folder that you are 
working on. You will also need a recent version of Apache Pig (0.9 or later) installed on  
the cluster.

In order to use the merge join functionality in Pig, the two datasets need to be sorted on  
the join key. To sort the two datasets, run the following commands using Unix sort:

$ sort -k1 apache_nobots_tsv.txt > sorted_apache_nobots_tsv.txt

$ sort -k1 nobots_ip_country_tsv.txt > sorted_nobots_ip_country_tsv.txt

Place the two new sorted files into HDFS:

$ hadoop fs –put sorted_apache_nobots_tsv.txt /user/hadoop

$ hadoop fs –put sorted_nobots_ip_country_tsv.txt /user/hadoop

How to do it...
Carry out the following steps to perform a merge join in Apache Pig:

1. Open a text editor and create a file named merge_join.pig. Create two Pig 
relations to load the two datasets:
nobots_weblogs = LOAD '/user/hadoop/sorted_apache_nobots_tsv.
txt' AS (ip: chararray, timestamp:long, page:chararray, http_
status:int, payload_size:int, useragent:chararray);
ip_country_tbl = LOAD '/user/hadoop/sorted_nobots_ip_country_tsv.
txt' AS (ip:chararray, country:chararray);

2. Join the two datasets using the merge keyword:
weblog_country_jnd = JOIN nobots_weblogs BY ip, ip_country_tbl BY 
ip USING 'merge';
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3. Format the joined relationship and store the result:
cleaned = FOREACH weblog_country_jnd GENERATE ip_country_tbl::ip, 
country, timestamp, page, http_status, payload_size, useragent;
STORE cleaned INTO '/user/jowens/weblog_country_jnd_merge';

4. Run the job:

$ pig –f merge_join.pig

How it works...
In step 1, we defined two relations: nobots_weblogs and ip_country_tbl, to refer to  
the two datasets.

In step 2, we joined the two datasets on the ip field using Pig's merge join. Pig will launch  
two MapReduce jobs to perform the merge join. First, Pig will send the data associated with 
the nobots_weblogs relation to all of the mappers, and sample the ip_country_tbl  
data to build an index. It is important to place the larger of the two relations as the left-hand 
side input to the JOIN statement, as we did with the nobots_weblogs relation. Once Pig  
has built the index, it launches a second map-only job, which reads the left-hand side 
relationship, and the index created in the first MapReduce job to join the two relations.

There's more...
It is important to note that Pig's merge join requires the input data to be sorted in ascending 
order across all input files. In addition, all of the data must be sorted in an ascending order  
by filename. For example, if the nobots_weblogs relation contains three distinct IPs  
across two input files, the following IPs could be distributed in this fashion:

 f Rows containing the IP 111.0.0.0 in the file named part-00000

 f Rows containing the IP 112.0.0.0 must occur after 111.0.0.0 in the file named  
part-00000

 f Rows containing the IP 222.0.0.0 will be placed into a file named part-00001

This example shows the possible total ordering of IPs across a number of files ordered by 
name. Filenames need to support ascending order because this is the order in which Pig  
will attempt to read each file to access the sorted data.

See also
 f Joining skewed data using Apache Pig skewed join
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Joining skewed data using Apache Pig 
skewed join

Data skew is a serious problem in a distributed processing environment, and occurs when  
the data is not evenly divided among the emitted key tuples from the map phase. This can 
lead to inconsistent processing times. In the MapReduce framework, data skew can cause 
some mappers/reducers to take significantly more time to perform a task as compared to 
other mappers/reducers in the job.

Apache Pig has the skewed join to help alleviate the data skew issue with joins. This recipe 
will demonstrate how to join a skewed dataset, with a small table.

Getting ready
Download the apache_nobots_tsv.txt and nobots_ip_country_tsv.txt datasets 
from http://www.packtpub.com/support and place them in the folder which you are 
currently working on. You will also need a recent version of Apache Pig (0.9 or later) installed 
on the cluster.

To skew the apache_nobots_tsv.txt file, create the following shell script to append the 
same row a few thousand times to a new file named skewed_apache_nobots_tsv.txt:

#!/bin/bash

cat apache_nobots_tsv.txt > skewed_apache_nobots_tsv.txt
for i in {1..5000}
do
  head -n1 apache_nobots_tsv.txt >> skewed_apache_nobots_tsv.txt
done

The IP address 221.220.8.0 will appear significantly higher number of times in the 
skewed_apache_nobots_tsv.txt file than any other IP.

Place the skewed_apache_nobots_tsv.txt and nobots_ip_country_tsv.txt files 
into HDFS:

$hadoop fs –put skewed_apache_nobots_tsv.txt /user/hadoop/

$hadoop fs –put nobots_ip_country_tsv.txt /user/hadoop/
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How to do it...
Follow the steps to perform a skewed join in Apache Pig:

1. Open a text editor and create a file named skewed_join.pig. Create two relations 
to load the two datasets:
nobots_weblogs = LOAD '/user/hadoop/skewed_apache_nobots_tsv.
txt' AS (ip: chararray, timestamp:long, page:chararray, http_
status:int, payload_size:int, useragent:chararray);
ip_country_tbl = LOAD '/user/hadoop/nobots_ip_country_tsv.txt' AS 
(ip:chararray, country:chararray);

2. Join the two datasets using the skewed keyword:
weblog_country_jnd = JOIN nobots_weblogs BY ip, ip_country_tbl BY 
ip USING 'skewed';

3. Format the joined relationship and store the result:
cleaned = FOREACH weblog_country_jnd GENERATE ip_country_tbl::ip, 
country, timestamp, page, http_status, payload_size, useragent;
STORE cleaned INTO '/user/hadoop/weblog_country_jnd_skewed';

4. Run the job:

$ pig –f skewed_join.pig

How it works...
In step 1, we defined two relations: nobots_weblogs and ip_country_tbl, to refer to  
the two datasets.

In step 2, we joined the two datasets on the ip field using Pig's skewed join. Pig will launch 
two MapReduce jobs to perform the skewed join. The first MapReduce job will sample the 
nobots_weblogs.txt (the skewed data) dataset. The second MapReduce job will perform 
a reduce-side join. Pig will determine how the data is distributed to the reducers based on  
the sampling from the first map reduce job. If there is skew present in the dataset, Pig will 
attempt to optimize the data distribution to the reducers.
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Using a map-side join in Apache Hive to 
analyze geographical events

When joining two tables in Apache Hive, one table might be significantly smaller than the 
other. In such cases, Hive can push a hash table representing the smaller table over the 
distributed cache and join the tables entirely map-side, which can lead to better parallelism 
and job throughput. In this recipe, we will use a map-side join to attach any significant holiday 
information that may have occurred on a particular geographic event.

Getting ready
Ensure that Apache Hive 0.7.1 is installed on your client machine and on the environment 
path for the active user account.

This recipe depends on having the Nigera_ACLED_cleaned.tsv dataset loaded into a  
Hive table with the name acled_nigeria_cleaned and with the following fields mapped 
to the respective datatypes. The Nigera_ACLED_cleaned.tsv dataset can be downloaded 
from http://www.packtpub.com/support.

Issue the following command to the Hive client:

describe acled_nigeria_cleaned

You should see the following response:

OK

loc  string

event_date  string

event_type  string

actor  string

latitude  double

longitude  double

source  string

fatalities  int
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This recipe also requires having nigeria-holidays.tsv loaded into a Hive table with the 
name nigeria_holidays and the following fields mapped to the respective datatypes.

Issue the following command to the Hive client:

describe nigeria_holidays

You should see the following response:

OK

yearly_date  string

description  string

How to do it...
Carry out the following steps to perform a map-side join in Apache Hive:

1. Open a text editor and create a file named map-join-acled-holidays.sql.

2. Add the inline creation and transformation syntax:
SELECT /*+ MAPJOIN(nh)*/ acled.event_date, acled.event_type, 
nh.description
    FROM acled_nigeria_cleaned acled
    JOIN nigeria_holidays nh
        ON (substr(acled.event_date, 6) = nh.yearly_date);

3. Run the map-join-acled-holidays.sql script from the operating system shell 
by supplying the –f option to the Hive client. You will know the map-side join is 
working if you see this message in the output trace:
Mapred Local Task Succeeded. Convert the Join into MapJoin

The generated MapReduce job should not have any reduce tasks.

4. You should see the following five rows appear first in the output console:

2002-01-01  Riots/Protests  New Years Day
2001-06-12  Battle-No change of territory  Lagos State only; in 
memory of failed 1993 election
2002-05-29  Violence against civilians   Democracy Day
2010-10-01  Riots/Protests  Independence Day
2010-10-01  Violence against civilians   Independence Day
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How it works...
The script inner joins the month-day portion of each record in the event_date column 
in acled_nigeria_cleaned to the yearly_date column in nigeria_holidays. 
substr(event_date, 6) will omit the year portion from each record in the event_
date column by starting from the position of the sixth character. The inline hint to /*+ 
MAPJOIN(nh) */ lets you manually define which table alias to load as the small table to 
each mapper. The nigeria_holidays table is very small and made the most sense to load 
as a hash table. Each map process in the join can operate over rows from acled_nigeria_
cleaned with its own copy of the nigeria_holidays hash table. The MAPJOIN operation 
handles creating the hash table and distributing it to each map task.

We would like to see the values of the event_date and event_type columns, and a 
description of the holiday, if any, the event occurred on.

There's more...
Map-side joins can be tricky to configure and use properly. Here are a few pointers.

Auto-convert to map-side join whenever possible
Set the property hive.auto.convert.join to true in your Hive config and Hive will 
automatically try to convert the join to a map-side join, as long as the table fits below a  
certain size threshold. You can configure the maximum size with the property hive.
smalltable.filesize. This will tell Hive what file size (or below) constitutes a small  
table. It's written in bytes expressed as a long (for example, 25000000L = 25M).

Also consider setting hive.hashtable.max.memory.usage, which tells the map task  
to terminate if it requires more than the configured memory percentage.

Map-join behavior
If you omit /*+ MAPJOIN() */ and rely on auto-convert, it can be difficult to follow what 
Hive is doing to optimize the join. Following are some tips:

 f TableFoo LEFT OUTER JOIN TableBar: Try to convert TableBar to a  
hash table

 f TableFoo RIGHT OUTER JOIN TABLE B: Try to convert TableFoo to a  
hash table

 f TableFoo FULL OUTER JOIN TableBar: Framework cannot map join  
full outer joins
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See also
 f Using optimized full outer joins in Apache Hive to analyze geographical events

Using optimized full outer joins in Apache 
Hive to analyze geographical events

This recipe will take a list of Nigerian VIPs and join any Nigerian ACLED events that occurred 
on any VIP's birthday. We are not only interested in viewing events that did or did not occur 
on a famous person's birthday, but also in the people who are not linked to any event. To 
accomplish this analytics in a single query, a full outer join makes the most sense. We  
would also like to store the results in a table.

Getting ready
Ensure that Apache Hive 0.7.1 is installed on your client machine and on the environment 
path for the active user account.

This recipe depends on having the Nigera_ACLED_cleaned.tsv dataset loaded into  
a Hive table with the name acled_nigeria_cleaned and with the following fields  
mapped to the respective datatypes. The Nigera_ACLED_cleaned.tsv dataset can  
be downloaded from http://www.packtpub.com/support.

Issue the following command to the Hive client:

describe acled_nigeria_cleaned

You should see the following response:

OK

loc string

event_date  string

event_type string

actor  string

latitude  double

longitude  double

source  string

fatalities  int
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This recipe also requires having nigeria-vip-birthdays.tsv loaded into a Hive table 
with the name nigeria_vips and with the following fields mapped to the respective 
datatypes. The nigeria-vip-birthdays.tsv dataset can be downloaded from  
http://www.packtpub.com/support.

Issue the following command to the Hive client:

describe nigeria_vips

You should see the following response:

OK

name  string

birthday string

description string

How to do it...
Follow the steps to perform a full outer join in Hive:

1. Open a text editor and create a file named full_outer_join_acled_vips.sql.

2. Add the inline creation and transformation syntax:
DROP TABLE IF EXISTS acled_nigeria_event_people_links;
CREATE TABLE acled_nigeria_event_people_links AS
SELECT acled.event_date, acled.event_type, vips.name, vips.
description as pers_desc, vips.birthday
    FROM nigeria_vips vips
    FULL OUTER JOIN acled_nigeria_cleaned acled
        ON (substr(acled.event_date,6) = substr(vips.birthday, 
6));

3. Run the full_outer_join_acled_vips.sql script from the operating system 
shell by supplying the –f option to the Hive client.

4. Once the script successfully finishes, it should signal 2931 records loaded into the 
table acled_nigeria_event_people_links.

5. Issue the following query to the Hive shell:
SELECT * FROM acled_nigeria_event_people_links WHERE event_date IS 
NOT NULL AND birthday IS NOT NULL limit 2";
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6. You should see the following output:

OK
2008-01-01  Battle-No change of territory  Jaja   Wachuku "First 
speaker of the Nigerian House of Representatives"  1918-01-01

2002-01-01  Riots/Protests  Jaja Wachuku  "First speaker of the 
Nigerian House of Representatives"  1918-01-01

How it works...
First, we drop any tables previously created by the name acled_nigeria_event_people_
links. We use an inline CREATE TABLE AS statement to shortcut having to explicitly define 
the table.

The full outer join will match rows from acled_nigeria_cleaned to rows from nigeria_
vips, where the substring of the records in the event_date column, starting at the sixth 
character position, is equal to a VIP's birthday. We use the substr(event_date, 6) 
method to eliminate the year portion of the records in the event_date column as a 
comparison factor.

The columns our receiving table will contain from the SELECT statement are acled.event_
date, acled.event_type, vips.name, vips.description as pers_desc, and vips.
birthday. The vips.description column gets the alias pers_desc to make the column 
label a little more meaningful. For event records with no matching birthdays, the columns 
vips.name, vips.description, and pers_desc will be NULL. For people with no matching 
events, the columns acled.event_date and acled.event_type will be NULL.

The decision to include nigeria_vips in the FROM and JOIN clauses on acled_nigeria_
cleaned was made to optimize the reducer throughput. Since we are performing a Hive 
common join and not a map-side join, the actual table joining will occur reduce-side. Hive will 
attempt to buffer the rows from the left-most table and then stream the rows from the right-
most table. The table nigeria_vips is much smaller than acled_nigeria_cleaned, 
thus we can alleviate the reducer memory footprint by designing the syntax of our query to 
stream the rows of acled_nigeria_cleaned and buffer those in nigeria_vips.

As it turns out for this particular VIP list, there were no birthdays for which there was no event 
listed in acled_nigeria_cleaned; therefore, the outer join produces no rows for people 
whose birthdays did not match an event. Moreover, no two people in our list have the same 
birthday; therefore, the outer join does not replicate the same event into multiple rows for 
each VIP birthday joined. The resulting table contains 2931 rows, which is exactly the same  
as the number of rows in acled_nigeria_cleaned.
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There's more...
There are other things you can do to improve the performance of the join operations in Hive.

Common join versus map-side join
The Hive documentation will use the term "common join" to refer to a join operation where  
one or more reducers are required to physically join the table rows. Map-side joins, as the  
name would suggest, perform the join across parallel map tasks and eliminate the need  
for the reduce phase.

STREAMTABLE hint
You can dictate which tables to stream during the reduce phase by using /*+ 
STREAMTABLE(tablename) */.

Table ordering in the query matters
The left-to-right ordering of join table declarations in your queries, especially in a multi-table 
join, is very important. Hive will attempt to buffer the rows from the left-hand side table and 
stream the results of the right-hand side. In a multi-table join, several map/reduce jobs may 
occur, but the same semantics apply. The result of the first join will be buffered, while the  
rows of the next right-most table will be streamed. Use this knowledge to order your table  
joins wisely.

Joining data using an external key-value 
store (Redis)

Key-value stores are an efficient tool for storing large datasets. In MapReduce, we can use 
key-value stores to house large datasets that might not fit into the memory of a mapper or 
mappers (remember that multiple mappers can run on the same slave node), but can fit  
into the main memory of the server.

In this recipe, we will demonstrate how to use Redis to perform a map-side join  
using MapReduce.

Getting ready
First, download and install Redis. This book used Redis version 2.4.15. A quick start guide is 
available on the Redis website, http://redis.io/topics/quickstart. Once you have 
compiled and installed the Redis server, start the server by issuing the following command:

$ redis-server
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Verify that the Redis server is working properly by using redis-cli:

$ redis-cli ping

Redis should respond with the message "PONG" if everything has been set up properly.

Next, you will need to download and compile Jedis from https://github.com/
xetorthio/jedis. Jedis is a Redis Java client that we will use in our MapReduce 
application to communicate with Redis. This book used Jedis version 2.1.0.

Finally, download the apache_nobots_tsv.txt and nobots_ip_country_tsv.txt 
datasets from http://www.packtpub.com/support. Place the apache_nobots_tsv.
txt file into HDFS, and leave the nobots_ip_country_tsv.txt file in the folder that  
you are working on.

How to do it...
Follow these steps to join data in MapReduce using Redis:

1. Create a Java method to read the nobots_ip_country_tsv.txt file from 
the folder that you are working on, and load its contents to Redis using the  
Jedis client:
private void loadRedis(String ipCountryTable) throws IOException {        
FileReader freader = new FileReader(ipCountryTable);
        BufferedReader breader = new BufferedReader(freader);
        jedis = new Jedis("localhost");
        jedis.select(0);
        jedis.flushDB();
        String line = breader.readLine();
        while(line != null) {
            String[] tokens = line.split("\t");
            String ip = tokens[0];
            String country = tokens[1];
            jedis.set(ip, country);
            line = breader.readLine();
        }
        System.err.println("db size = " + jedis.dbSize());
    }
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2. Next, set up a map-only MapReduce job. The following code snippet is the final  
version of the class to create a map-only MapReduce job. It contains the 
loadRedis() method we created in step 1:
public class MapSideJoinRedis extends Configured implements Tool {
    
    private Jedis jedis = null;
    
    private void loadRedis(String ipCountryTable) throws 
      IOException {
        
      FileReader freader = new FileReader(ipCountryTable);
      BufferedReader breader = new BufferedReader(freader);
      jedis = new Jedis("localhost");
      jedis.select(0);
      jedis.flushDB();
      String line = breader.readLine();
      while(line != null) {
        String[] tokens = line.split("\t");
        String ip = tokens[0];
        String country = tokens[1];
        jedis.set(ip, country);
        line = breader.readLine();
      }
      System.err.println("db size = " + jedis.dbSize());
    }
    
    public int run(String[] args) throws Exception {
        
      Path inputPath = new Path(args[0]);
      String ipCountryTable = args[1];
      Path outputPath = new Path(args[2]);
      
      loadRedis(ipCountryTable);
      
      Configuration conf = getConf();
      Job weblogJob = new Job(conf);
      weblogJob.setJobName("MapSideJoinRedis");
      weblogJob.setNumReduceTasks(0);
      weblogJob.setJarByClass(getClass());
      weblogJob.setMapperClass(WeblogMapper.class);        
      weblogJob.setMapOutputKeyClass(Text.class);
      weblogJob.setMapOutputValueClass(Text.class);
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      weblogJob.setOutputKeyClass(Text.class);
      weblogJob.setOutputValueClass(Text.class);
      weblogJob.setInputFormatClass(TextInputFormat.class);
      weblogJob.setOutputFormatClass(TextOutputFormat.class);
      FileInputFormat.setInputPaths(weblogJob, inputPath);
      FileOutputFormat.setOutputPath(weblogJob, outputPath);
      
      
      if(weblogJob.waitForCompletion(true)) {
        return 0;
      }
      return 1;
    }
    
    public static void main(String[] args) throws Exception {
        int returnCode = ToolRunner.run(new 
                           MapSideJoinRedis(), args);
        System.exit(returnCode);
    }
}

3. Create a mapper that will join the apache_nobots_tsv.txt dataset with the 
nobots_ip_country_tsv.txt dataset that has been loaded to Redis:
public class WeblogMapper extends Mapper<Object, Text, Text, Text> 
{

    private Map<String, String> ipCountryMap = new 
      HashMap<String, String>();
    private Jedis jedis = null;
    private Text outputKey = new Text();
    private Text outputValue = new Text();
    
    private String getCountry(String ip) {
        String country = ipCountryMap.get(ip);
        if (country == null) {
            if (jedis == null) {
                jedis = new Jedis("localhost");
                jedis.select(0);
            }
            country = jedis.get(ip);
            ipCountryMap.put(ip, country);
        }
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        return country;
    }

    @Override
    protected void map(Object key, Text value, Context 
      context) throws IOException, InterruptedException {
        String row = value.toString();
        String[] tokens = row.split("\t");
        String ip = tokens[0];
        String country = getCountry(ip);
        outputKey.set(country);
        outputValue.set(row);
        context.write(outputKey, outputValue);
    }
    
}

4. Finally, launch the MapReduce job:

$ hadoop jar AdvJoinChapter5-1.0-SNAPSHOT.jar com.packt.ch5.
advjoin.redis.MapSideJoinRedis /user/hadoop/apache_nobots_tsv.txt 
./nobots_ip_country_tsv.txt /user/hadoop/data_jnd

How it works...
In steps 1 and 2, we created a class to set up a map-only job. This class looks very familiar  
to other map-only jobs we've created in past recipes, except for the loadRedis() method.

The loadRedis() method first connects to the local Redis instance using the Jedis 
constructor. Next, we used the select() method to choose which Redis database we  
wanted to use. A single Redis instance can contain a number of databases, which are 
identified using a numeric index. Once we get connected to the desired database, we  
call the method flushDB(), which deletes everything currently stored in the current 
database. Finally, we read the nobots_ip_country_tsv.txt file from the folder in  
which you are currently working, and load the Redis instance with the key-value  
pair ip/country by using the set() method.

There's more...
This recipe used a very simple string data structure to store the ip/country key-value  
pairs. Redis supports many other data structures, including hashes, lists, and sorted sets.  
In addition, Redis has support for transactions, and a publish/subscribe mechanism. Visit  
the Redis website http://redis.io/, to review all of this functionality in depth.
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Big Data Analysis

In this chapter, we will cover:

 f Counting distinct IPs in weblog data using MapReduce and Combiners

 f Using Hive date UDFs to transform and sort event dates from geographic event data

 f Using Hive to build a per-month report of fatalities over geographic event data

 f Implementing a custom UDF in Hive to help validate source reliability over geographic 
event data

 f Marking the longest period of non-violence using Hive MAP/REDUCE operators  
and Python

 f Calculating the cosine similarity of Artists in the Audioscrobbler dataset using Pig

 f Trim outliers from the Audioscrobbler dataset using Pig and datafu

Introduction
Learning to apply Apache Hive, Pig, and MapReduce to solve the specific problems you are 
faced with can be difficult. The recipes in this chapter present a few big data problems and 
provide solutions that show how to tackle them. You will notice that the questions we ask  
of the data are not incredibly complicated, but you will require a different approach when 
dealing with a large volume of data. Even though the sample datasets in the recipes are 
small, you will find that the code is still very applicable to bigger problem spaces distributed 
over large Hadoop clusters.

The analytic questions in this chapter are designed to highlight many of the more powerful 
features of the various tools. You will find many of these features and operators useful as  
you begin solving your own problems.
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Counting distinct IPs in weblog data using 
MapReduce and Combiners

This recipe will walk you through creating a MapReduce program to count distinct IPs in 
weblog data. We will demonstrate the application of a combiner to optimize data transfer 
overhead between the map and reduce stages. The code is implemented in a generic  
fashion and can be used to count distinct values in any tab-delimited dataset.

Getting ready
This recipe assumes that you have a basic familiarity with the Hadoop 0.20 MapReduce API.  
You will need access to the weblog_entries dataset supplied with this book and stored  
in an HDFS folder at the path /input/weblog.

You will need access to a pseudo-distributed or fully-distributed cluster capable of running 
MapReduce jobs using the newer MapReduce API introduced in Hadoop 0.20.

You will also need to package this code inside a JAR file to be executed by the Hadoop  
JAR launcher from the shell. Only the core Hadoop libraries are required to compile and  
run this example.

How to do it...
Perform the following steps to count distinct IPs using MapReduce:

1. Open a text editor/IDE of your choice, preferably one with Java syntax highlighting.

2. Create a class named DistinctCounterJob.java in your JAR file at whatever 
source package is appropriate.

3. The following code will serve as the Tool implementation for job submission:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;



Chapter 6

151

import java.io.IOException;
import java.util.regex.Pattern;

public class DistinctCounterJob implements Tool {

    private Configuration conf;
    public static final String NAME = "distinct_counter";
    public static final String COL_POS = "col_pos";

    public static void main(String[] args) throws Exception {
        ToolRunner.run(new Configuration(),  new 
DistinctCounterJob(), args);
    }

4. The run() method is where we set the input/output formats, mapper class 
configuration, combiner class, and key/value class configuration:
    public int run(String[] args) throws Exception {
        if(args.length != 3) {
            System.err.println("Usage: distinct_counter <input> 
<output> <element_position>");
            System.exit(1);
        }
        conf.setInt(COL_POS, Integer.parseInt(args[2]));

        Job job = new Job(conf, "Count distinct elements at 
position");
        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);

        job.setMapperClass(DistinctMapper.class);
        job.setReducerClass(DistinctReducer.class);
        job.setCombinerClass(DistinctReducer.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        job.setJarByClass(DistinctCounterJob.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        return job.waitForCompletion(true) ? 1 : 0;

    }
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    public void setConf(Configuration conf) {
        this.conf = conf;
    }

    public Configuration getConf() {
        return conf;
    }
}

5. The map() function is implemented in the following code by extending  
mapreduce.Mapper:
    public static class DistinctMapper
            extends Mapper<LongWritable, Text, Text, IntWritable> 
{

        private static int col_pos;
        private static final Pattern pattern = Pattern.
compile("\\t");
        private Text outKey = new Text();
        private static final IntWritable outValue = new 
IntWritable(1);

        @Override
        protected void setup(Context context
        ) throws IOException, InterruptedException {
            col_pos = context.getConfiguration().
getInt(DistinctCounterJob.COL_POS, 0);
        }

        @Override
        protected void map(LongWritable key, Text value,
                           Context context) throws IOException, 
InterruptedException {
            String field = pattern.split(value.toString())[col_
pos];
            outKey.set(field);
            context.write(outKey, outValue);
        }
    }
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6. The reduce() function is implemented in the following code by extending 
mapreduce.Reducer:
    public static class DistinctReducer
            extends Reducer<Text, IntWritable, Text, IntWritable> 
{

        private IntWritable count = new IntWritable();

        @Override
        protected void reduce(Text key, Iterable<IntWritable> 
values, Context context
        ) throws IOException, InterruptedException {
            int total = 0;
            for(IntWritable value: values) {
                total += value.get();
            }
            count.set(total);
            context.write(key, count);
        }
    }

7. The following command shows the sample usage against weblog data with column 
position number 4, which is the IP column:

hadoop jar myJobs.jar distinct_counter /input/weblog/ /output/
weblog_distinct_counter 4

How it works...
First we set up DistinctCounterJob to implement a Tool interface for remote submission. 
The static constant NAME is of potential use in the Hadoop Driver class, which supports the 
launching of different jobs from the same JAR file. The static constant COL_POS is initialized 
to the third required argument from the command line <element_position>. This value 
is set within the job configuration, and should match the position of the column you wish to 
count for each distinct entry.  Supplying 4 will match the IP column for the weblog data.

Since we are reading and writing text, we can use the supplied TextInputFormat and 
TextOutputFormat classes. We will set the Mapper and Reduce classes to match our 
DistinctMapper and DistinctReducer implemented classes respectively. We also 
supply DistinctReducer as a combiner class. This decision is explained in more detail  
as follows:
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It's also very important to call setJarByClass() so that the TaskTrackers can properly 
unpack and find the Mapper and Reducer classes. The job uses the static helper methods 
on FileInputFormat and FileOutputFormat to set the input and output directories 
respectively. Now we're set up and ready to submit the job.

The Mapper class sets up a few member variables as follows:

 f col_pos: This is initialized to a value supplied in the configuration. It allows users  
to change which column to parse and apply the count distinct operation on.

 f pattern: This defines the column's split point for each row based on tabs.

 f outKey: This is a class member that holds output values. This avoids having to 
create a new instance for each output that is written.

 f outValue: This is an integer representing one occurrence of the given key. It is 
similar to the WordCount example.

The map() function splits each incoming line's value and extracts the string located at col_
pos. We reset the internal value for outKey to the string found on that line's position. For our 
example, this will be the IP value for the row. We emit the value of the newly reset outKey 
variable along with the value of outValue to mark one occurrence of that given IP address.

Without the assistance of the combiner, this would present the reducer with an iterable 
collection of 1s to be counted.

The following is an example of a reducer {key, value:[]} without a combiner:

{10.10.1.1, [1,1,1,1,1,1]} = six occurrences of the IP "10.10.1.1".

The implementation of the reduce() method will sum the integers and arrive at the correct 
total, but there's nothing that requires the integer values to be limited to the number 1. We 
can use a combiner to process the intermediate key-value pairs as they are output from each 
mapper and help improve the data throughput in the shuffle phase. Since the combiner is 
applied against the local map output, we may see a performance improvement as the amount 
of data we need to transfer for an intermediate key/value can be reduced considerably.

Instead of seeing {10.10.1.1, [1,1,1,1,1,1]}, the combiner can add the 1s and replace the 
value of the intermediate value for that key to {10.10.1.1, [6]}. The reducer can then sum the 
various combined values for the intermediate key and arrive at the same correct total. This is 
possible because addition is both a commutative and associative operation. In other words:

 f Commutative: The order in which we process the addition operation against the 
values has no effect on the final result. For example, 1 + 2 + 3 = 3 + 1 + 2.

 f Associative: The order in which we apply the addition operation has no effect on the 
final result. For example, (1 + 2) + 3 = 1 + (2 + 3).

For counting the occurrences of distinct IPs, we can use the same code in our reducer as a 
combiner for output in the map phase.
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When applied to our problem, the normal output with no combiner from two separate 
independently running map tasks might look like the following where {key: value[]} is equal  
to the intermediate key-value collection:

 f Map Task A = {10.10.1.1, [1,1,1]} = three occurrences

 f Map Task B = {10.10.1.1, [1,1,1,1,1,1]} = six occurrences

Without the aid of a combiner, this will be merged in the shuffle phase and presented to a 
single reducer as the following key-value collection:

 f {10.10.1.1, [1,1,1,1,1,1,1,1,1]} = nine total occurrences

Now let's revisit what would happen when using a Combiner against the exact same sample 
output:

Map Task A = {10.10.1.1, [1,1,1]} = three occurrences

 f Combiner = {10.10,1,1, [3] = still three occurrences, but reduced for this mapper.

Map Task B = {10.10.1.1, [1,1,1,1,1,1] = six occurrences

 f Combiner = {10.10.1.1, [6] = still six occurrences

Now the reducer will see the following for that key-value collection:

 f {10.10.1.1, [3,6]} = nine total occurrences

We arrived at the same total count for that IP address, but we used a combiner to limit the 
amount of network I/O during the MapReduce shuffle phase by pre-reducing the intermediate 
key-value output from each mapper.

There's more...
The combiner can be confusing to newcomers. Here are some useful tips:

The Combiner does not always have to be the same class as  
your Reducer
The previous recipe and the default WordCount example show the Combiner class being 
initialized to the same implementation as the Reducer class. This is not enforced by the 
API, but ends up being common for many types of distributed aggregate operations such 
as sum(), min(), and max(). One basic example might be the min() operation of the 
Reducer class that specifically formats output in a certain way for readability. This will  
take a slightly different form from that of the min() operator of the Combiner class,  
which does not care about the specific output formatting.
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Combiners are not guaranteed to run
Whether or not the framework invokes your combiner during execution depends on the 
intermediate spill file size from each map output, and is not guaranteed to run for every 
intermediate key. Your job should not depend on the combiner for correct results, it should  
be used only for optimization.

You can control the spill file threshold when MapReduce tries to combine intermediate  
values with the configuration property min.num.spills.for.combine.

Using Hive date UDFs to transform and sort 
event dates from geographic event data

This recipe will illustrate the efficient use of the Hive date UDFs to list the 20 most recent 
events and the number of days between the event date and the current system date.

Getting ready
Make sure you have access to a pseudo-distributed or fully-distributed Hadoop cluster  
with Apache Hive 0.7.1 installed on your client machine and on the environment path for  
the active user account.

This recipe depends on having the Nigera_ACLED_cleaned.tsv dataset loaded into a Hive 
table named acled_nigeria_cleaned with the fields mapped to the respective datatypes.

Issue the following command to the Hive client to see the mentioned fields:

describe acled_nigeria_cleaned

You should see the following response:

OK

Loc  string

event_date  string

event_type  string

actor  string

latitude  double

longitude  double

source  string

fatalities  int
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How to do it...
Perform the following steps to utilize Hive UDFs for sorting and transformation:

1. Open a text editor of your choice, ideally one with SQL syntax highlighting.

2. Add the inline creation and transform syntax:
SELECT event_type,event_date,days_since FROM (
    SELECT event_type,event_date,
            datediff(to_date(from_unixtime(unix_timestamp())),
                      to_date(from_unixtime( 
                              unix_timestamp(event_date,
                             'yyyy-MM-dd')))) AS days_since
     FROM acled_nigeria_cleaned) date_differences
     ORDER BY event_date DESC LIMIT 20;

3. Save the file as top_20_recent_events.sql in the active folder.

4. Run the script from the operating system shell by supplying the –f option to the  
Hive client. You should see the following five rows appear first in the output console:

OK

Battle-No change of territory  2011-12-31    190

Violence against civilians  2011-12-27    194

Violence against civilians  2011-12-25    196

Violence against civilians  2011-12-25    196

Violence against civilians  2011-12-25    196

How it works...
Let's start with the nested SELECT subqueries. We select three fields from our Hive table 
acled_nigeria_cleaned: event_type, event_date, and the result of calling the UDF 
datediff(), which takes as arguments an end date and a start date. Both are expected 
in the form yyyy-MM-dd. The first argument to datediff() is the end date, with which we 
want to represent the current system date. Calling unix_timestamp() with no arguments 
will return the current system time in milliseconds. We send that return value to from_
unixtimestamp() to get a formatted timestamp representing the current system date in 
the default Java 1.6 format (yyyy-MM-dd HH:mm:ss). We only care about the date portion, 
so calling to_date() with the output of this function strips the HH:mm:ss. The result is the 
current date in the yyyy-MM-dd form.
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The second argument to datediff() is the start date, which for our query is the event_
date. The series of function calls operate in almost the exact same manner as our previous 
argument, except that when we call unix_timestamp(), we must tell the function that 
our argument is in the SimpleDateFormat format that is yyyy-MM-dd. Now we have both 
start_date and end_date arguments in the yyyy-MM-dd format and can perform the 
datediff() operation for the given row. We alias the output column of datediff() as 
days_since for each row.

The outer SELECT statement takes these three columns per row and sorts the entire output 
by event_date in descending order to get reverse chronological ordering. We arbitrarily limit 
the output to only the first 20.

The net result is the 20 most recent events with the number of days that have passed since 
that event occurred.

There's more...
The date UDFs can help tremendously in performing string date comparisons. Here are some 
additional pointers:

Date format strings follow Java SimpleDateFormat guidelines
Check out the Javadocs for SimpleDateFormat to learn how your custom date strings  
can be used with the date transform UDFs.

Default date and time formats
 f Many of the UDFs operate under a default format assumption.

 f For UDFs requiring only date, your column values must be in the form yyyy-MM-dd.

 f For UDFs that require date and time, your column values must be in the form yyyy-
MM-dd HH:mm:ss.

See also
 f Using Hive to build a per-month report of fatalities over geographic event data
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Using Hive to build a per-month report of 
fatalities over geographic event data

This recipe will show a very simple analytic that uses Hive to count fatalities for every month 
appearing in the dataset and print the results to the console.

Getting ready
Make sure you have access to a pseudo-distributed or fully-distributed Hadoop cluster  
with Apache Hive 0.7.1 installed on your client machine and on the environment path for  
the active user account.

This recipe depends on having the Nigera_ACLED_cleaned.tsv dataset loaded into a  
Hive table named acled_nigeria_cleaned with the following fields mapped to the 
respective datatypes.

Issue the following command to the Hive client:

describe acled_nigeria_cleaned

You should see the following response:

OK

loc  string

event_date  string

event_type  string

actor  string

latitude  double

longitude  double

source  string

fatalities  int

How to do it...
Follow the steps to use Hive for report generation:

1. Open a text editor of your choice, ideally one with SQL syntax highlighting.
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2. Add the inline creation and transformation syntax:
SELECT from_unixtime(unix_timestamp(event_date,  'yyyy-MM-dd'), 
'yyyy-MMM'),
       COALESCE(CAST(sum(fatalities) AS STRING), 'Unknown')
       FROM acled_nigeria_cleaned
       GROUP BY from_unixtime(unix_timestamp(event_date, 'yyyy-MM-
dd'),'yyyy-MMM');

3. Save the file as monthly_violence_totals.sql in the active folder.

4. Run the script from the operating system shell by supplying the –f option to the  
Hive client. You should see the following three rows appear first in the output console. 
Note that the output is sorted lexicographically, and not on the order of dates.

OK

1997-Apr  115

1997-Aug  4

1997-Dec  26

How it works...
The SELECT statement uses unix_timestamp() and from_unixtime() to reformat the 
event_date for each row as just a year-month concatenated field. This is also in the GROUP 
BY expression for totaling fatalities using sum().

The coalesce() method returns the first non-null argument passed to it. We pass as the 
first argument, the value of fatalities summed for that given year-month, cast as a string. If 
that value is NULL for any reason, return the constant Unknown. Otherwise return the string 
representing the total fatalities counted for that year-month combination. Print everything to 
the console over stdout.

There's more...
The following are some additional helpful tips related to the code in this recipe:

The coalesce() method can take variable length arguments.
As mentioned in the Hive documentation, coalesce() supports one or more arguments.  
The first non-null argument will be returned. This can be useful for evaluating several  
different expressions for a given column before deciding the right one to choose.

The coalesce() will return NULL if no argument is non-null. It's not uncommon to provide  
a type literal to return if all other arguments are NULL.
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Date reformatting code template 
Having to reformat dates stored in your raw data is very common. Proper use of from_
unixtime() and unix_timestamp() can make your life much easier.

Remember this general code template for concise date format transformation in Hive:

from_unixtime(unix_timestamp(<col>,<in-format>),<out-format>);

See also
 f Using Hive date UDFs to transform and sort event dates from geographic event data

Implementing a custom UDF in Hive to help 
validate source reliability over geographic 
event data 

There are many operations you will want to repeat across various data sources and tables 
in Hive. For this scenario, it makes sense to write your own user-defined function (UDF). You 
can write your own subroutine in Java for use on any Writable input fields and to invoke your 
function from Hive scripts whenever necessary. This recipe will walk you through the process 
of creating a very simple UDF that takes a source and returns yes or no for whether that 
source is reliable. 

Getting ready
Make sure you have access to a pseudo-distributed or fully-distributed Hadoop cluster  
with Apache Hive 0.7.1 installed on your client machine and on the environment path for  
the active user account.

This recipe depends on having the Nigera_ACLED_cleaned.tsv dataset loaded into a  
Hive table with the name acled_nigeria_cleaned with the following fields mapped to  
the respective datatypes.

Issue the following command to the Hive client:

describe acled_nigeria_cleaned;

You should see the following response:

OK

loc  string
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event_date  string

event_type  string

actor  string

latitude  double

longitude  double

source string

fatalities  int

Additionally, you will need to place the following recipe's code into a source package for 
bundling within a JAR file of your choice. This recipe will use <myUDFs.jar> as a reference 
point for your custom JAR file and <fully_qualified_path_to_TrustSourceUDF> as 
a reference point for the Java package your class exists within. An example of a fully qualified 
path for a pattern would be java.util.regex.Pattern.

In addition to the core Hadoop libraries, your project will need to have hive-exec and  
hive-common JAR dependencies on the classpath for this to compile.

How to do it...
Perform the following steps to implement a custom Hive UDF:

1. Open a text editor/IDE of your choice, preferably one with Java syntax highlighting.

2. Create TrustSourceUDF.java at the desired source package. Your class should 
exist at some package <fully_qualified_path>.TrustSourceUDF.class.

3. Enter the following source as the implementation for the TrustSourceUDF class:
import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;
import java.lang.String;import java.util.HashSet;
import java.util.Set;

public class TrustSourceUDF extends UDF {

    private static Set<String> untrustworthySources = new 
HashSet<String>();
    private Text result = new Text();

    static {
     untrustworthySources.add("");
     untrustworthySources.add("\"\"\"
     http://www.afriquenligne.fr/3-soldiers\"");
     untrustworthySources.add("Africa News Service");
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     untrustworthySources.add("Asharq Alawsat");
     untrustworthySources.add("News Agency of Nigeria (NAN)");
     untrustworthySources.add("This Day (Nigeria)");
    }

    @Override
    public Text evaluate(Text source) {

         if(untrustworthySources.contains(source.toString())) {
             result.set("no");
         } else {
             result.set("yes");
         }
         return result;
    }
}

4. Build the containing JAR <myUDFs.jar> and test your UDF through the Hive client. 
Open a Hive client session through the command shell. Hive should already be on  
the local user environment path. Invoke the Hive shell with the following command:
hive

5. Add the JAR file to the Hive session's classpath:
 add jar /path/to/<myUDFs.jar>;

You will know that the preceding operation succeeded if you see the following 
messages indicating that the JAR has been added to the classpath and the 
distributed cache:

Added /path/to/<myUDFs.jar> to class path

Added resource: /path/to/<myUDFs.jar>     

6. Create the function definition trust_source as an alias to TrustSourceUDF at 
whatever source package you specified in your JAR:
create temporary function trust_source as '<fully_qualified_path_
to_TrustSourceUDF>';

You should see the shell prompt you that the command executed successfully. If you 
see the following error, it usually indicates your class was not found on the classpath:

FAILED: Execution Error, return code 1 from org.apache.hadoop.
hive.ql.exec.FunctionTask

7. Test the function with the following query. You should see mostly yes printed on each 
line of the console, with a few no's here and there:

select trust_source(source) from acled_nigeria_cleaned;
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How it works...
The class TrustSourceUDF extends UDF. No methods are required for implementation; 
however, in order for the class to function at Hive runtime as a UDF, your subclass must 
override evaluate(). You can have one or more overloaded evaluate() methods with 
different arguments.  Ours only needs to take in a source value to check. 

During class initialization, we set up a static instance of the java.util.Set class named 
untrustworthySources. Within a static initialization block, we set up a few sources by 
their names to be flagged as unreliable.

The entries here are purely arbitrary and should not be considered 
reliable or unreliable outside of this recipe.

We flag an empty source as unreliable.

When the function is invoked, it expects a single Text instance to be checked against the 
sources we've flagged as unreliable. Return yes or no depending on whether the given  
source appears in the set of unreliable sources or not. We set up the private Text instance  
to be re-used every time the function is called.

Once the JAR file containing the class is added to the classpath, and we set up our temporary 
function definition, we can now use the UDF across many different queries.

There's more...
User-defined functions are a very powerful feature within Hive. The following sections list a  
bit more information regarding them:

Check out the existing UDFs
The Hive documentation has a great explanation of the built-in UDFs bundled with 
the language. A great write up is available at https://cwiki.apache.org/
confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-
BuiltinAggregateFunctions%28UDAF%29.

To see which functions are available in your specific version of Hive, issue the following 
command in the Hive shell.

show functions;

Once you pinpoint a function that looks interesting, learn more information about it from the 
Hive wiki or directly from the Hive shell by executing the following command:

describe function <func>;

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-BuiltinAggregateFunctions%28UDAF%29
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-BuiltinAggregateFunctions%28UDAF%29
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-BuiltinAggregateFunctions%28UDAF%29
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User-defined table and aggregate functions
Hive UDFs do not need to have a one-to-one interaction for input and output. The API allows 
the generation of many outputs from one input (GenericUDTF) as well as custom aggregate 
functions that take a list of input rows and output a single value (UDAF).

Export HIVE_AUX_JARS_PATH in your environment
Adding JAR files dynamically to the classpath is useful for testing and debugging, but can  
be cumbersome if you have many libraries you repeatedly wish to use. The Hive command line 
interpreter will automatically look for the existence of HIVE_AUX_JARS_PATH in the executing 
user's environment. Use this environment variable to set additional JAR paths that will always 
get loaded in the classpath of new Hive sessions for that client machine.

See also
 f Using Hive date UDFs to transform and sort event dates from geographic event data

 f Using Hive to build a per-month report of fatalities over geographic event data

Marking the longest period of non-violence 
using Hive MAP/REDUCE operators and 
Python

The Hive query language provides facilities to control the MapReduce dataflow and inject  
your own custom map, and to reduce scripts at each stage. When used properly, this is a  
very powerful technique for writing concise MapReduce programs using minimal syntax.

This recipe will show a complete example of how to write custom MapReduce control flow 
using different operators in Hive. The analytic will specifically look for the longest gap in 
events for each location to get an idea of how frequently violence occurs in that location.

Getting ready
Make sure you have access to a pseudo-distributed or fully-distributed Hadoop cluster  
with Apache Hive 0.7.1 installed on your client machine and on the environment path for  
the active user account.

Your cluster will also need Python 2.7 or greater installed on each node and available on  
the environment path for the Hadoop user. The script shown in this recipe assumes an 
installation at /usr/bin/env python. If this does not match your installation, change  
the script accordingly.
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This recipe depends on having the Nigeria_ACLED_cleaned.tsv dataset loaded into 
a Hive table named acled_nigeria_cleaned with the following fields mapped to the 
respective datatypes.

Issue the following command to the Hive client:

describe acled_nigeria_cleaned;

You should see the following response:

OK

loc  string

event_date  string

event_type  string

actor  string

latitude  double

longitude  double

source  string

fatalities  int

How to do it...
Perform the following steps to mark the longest period of non-violence using Hive:

1. Open a text editor of your choice, ideally one with SQL and Python syntax highlighting.

2. Add the following inline creation and transform syntax:
SET mapred.child.java.opts=-Xmx512M;

DROP TABLE IF EXISTS longest_event_delta_per_loc;
CREATE TABLE longest_event_delta_per_loc (
    loc STRING,
    start_date STRING,
    end_date STRING,
    days INT
);

ADD FILE calc_longest_nonviolent_period.py;
FROM (
        SELECT loc, event_date, event_type
        FROM acled_nigeria_cleaned
        DISTRIBUTE BY loc SORT BY loc, event_date
     ) mapout
INSERT OVERWRITE TABLE longest_event_delta_per_loc
REDUCE mapout.loc, mapout.event_date, mapout.event_type
USING 'python calc_longest_nonviolent_period.py'
AS loc, start_date, end_date, days;
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3. Save the file in the local working folder as longest_nonviolent_periods_per_
location.sql.

4. Create a new file in your text editor with the name calc_longest_nonviolent_
period.py and save it in the same working folder as longest_nonviolent_
periods_per_location.sql.

5. Add the Python syntax. Python is sensitive to indentation. Keep that in mind if you  
are cutting and pasting this code:
#!/usr/bin/python
import sys
from datetime import datetime, timedelta

current_loc = "START_OF_APP"
(prev_date, start_date, end_date, start_time_obj, end_time_obj,  
current_diff)=('', '', '', None, None, timedelta.min)
for line in sys.stdin:
  (loc,event_date,event_type) = line.strip('\n').split('\t')
  if loc != current_loc and current_loc != "START_OF_APP":
    if end_date != '': 
      print '\t'.join([current_loc,start_date,event_
date,str(current_diff.days)])
          (prev_date, start_date, end_date, start_time_obj, end_
time_obj,current_diff)=('', '', '', None, None, timedelta.min)
    end_time_obj = datetime.strptime(event_date,'%Y-%m-%d')
  current_loc = loc
  if start_time_obj is not None: # implies > 2 events
    diff = end_time_obj - start_time_obj
    if diff > current_diff:
      current_diff = diff # set the current max time delta
      start_date = prev_date 
      end_date = event_date
  prev_date = event_date
  start_time_obj = end_time_obj

6. Run the script from the operating system's shell by supplying the –f option to the  
Hive client:
hive –f longest_nonviolent_periods_per_location.sql

7. Issue the following query directly to the Hive shell. You should see rows printed to  
the console in no particular order:

hive –e "select * from longest_event_delta_per_loc;"
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How it works...
Let's start with the Hive script we created. The first line is simply to force a certain JVM heap 
size in our execution. You can set this to whatever is appropriate for your cluster. For the 
ACLED Nigeria dataset, 512 MB is more than enough.

Then we create our table definition for the output, dropping any existing tables with a 
matching name longest_event_delta_per_loc. The table requires four fields per  
record: loc for the location, start_date to hold the value of the event_date field of the 
lower bound, end_date to hold the value of event_date field of the upper bound, and  
days to show the total number of days elapsed between the events.

We then add the file calc_longest_nonviolent_period.py to the distributed cache 
for use across the different reducer JVMs. This will be used as our reduce script, but first we 
must organize the map output. The inner SELECT statement grabs loc, event_date, and 
event_type from the acled_nigeria_cleaned table in Hive. The DISTRIBUTE BY loc 
statement tells Hive to guarantee that all rows with matching values for loc go to the same 
reducer. SORT BY loc, event_date tells Hive to sort the data as it arrives to each reducer 
by the combination of loc and event_date. Now the same reducer can process every row 
corresponding to each location locally, and in the sorted order of event_date.

We alias the output of this SELECT statement to mapout and use the shorthand REDUCE 
operator to process each row from mapout. The USING clause lets us supply a custom Python 
script to read each record as it comes over stdin. The AS operator lets us map the delimited 
fields that are output by the script over stdout to pipe into the fields of the receiving table.

The Python script calc_longest_nonviolent_period.py will be used by the reduce 
stage to compute the longest time gap between the events for each location. Since we have 
guaranteed that all records with a common loc value are at the same reducer and that those 
records are in the date-sorted order for each location, we are now in a position to understand 
how the Python script works.

In the Python script calc_longest_nonviolent_period.py, we start with #!/usr/
bin/python as a hint to the shell on how to execute the script. We need to import sys to 
use the stdin and stdout operations. We also need the datetime and timedelta class 
definitions from the datetime package.

The script operates very procedurally and can be a bit difficult to follow. First we declare 
current_loc and initialize its value to START_OF_APP as a flag to the print out conditional. 
We then set up several different variables to hold different placeholder values to be used on  
a per-location basis by the for loop.

 f prev_date: This holds the last observed event_date for the loc value. It is blank 
if it's the start of the app, or holds a new location value.

 f start_date: This holds the lower bound for the longest currently observed time 
delta between events for that value of loc.
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 f end_date: This holds the upper bound for the longest currently observed time  
elapsed between events for the value of current_loc.

 f start_time_obj: This holds the most recently iterated datetime object, or None 
if it's the start of the app, or holds a new location value.

 f end_time_obj: This holds the current event_date datetime object, or None if  
it's the start of the app, or holds a new location value.

 f current_diff: This holds the time delta for the current longest observed time  
elapsed between events for the current_loc, or the lowest possible time delta  
if it's the start of the app, or a new location value.

The for loop reads rows over stdin that have already been sorted by the combination of 
loc and event_date. We parse each row into variables representing the column values  
by first stripping any additional newlines and splitting the line on tab characters.

The first conditional is skipped as current_loc is equal to START OF APP. We have  
only begun processing the first row across all locations on that reducer, and have nothing 
to output yet. Should we have a value for loc that is different from the value of current_
loc, and we are not at the start of the application, then that is a signal that we are done 
processing the rows for current_loc, and can safely output the longest time delta for 
events in that location. Should end_date still be set to an empty string, then that indicates 
we only saw one event for that location. In this scenario, we do not output anything for that 
location. Finally, we reset the six placeholder variables previously explained, so that we may 
accurately process the records for the next location.

Following the conditional, we immediately set the value of current_loc that we are 
processing equal to loc, to avoid unnecessary entry of the mentioned conditional on the  
next iteration when we have not yet transitioned locations. We set end_time_obj to the 
value of event_date for the current row. If start_time_obj is set to None, then that 
means we are on the first row for that location and cannot yet do a time delta comparison. 
Whether or not start_time_obj is set to None, at the end of the loop we set prev_date 
equal to event_date and start_time_obj equal to end_time_obj of the current 
iteration. By doing so, on the next iteration, start_time_obj will hold the event_date of 
the previous record, while end_time_obj will hold the event_date of the current record.

When start_time_obj is no longer set to None after the first iteration for a given location, 
we can begin doing diff comparisons on these two datetime objects. Subtracting start_
time_obj from end_time_obj yields a time delta object, which if larger than the current_
diff value, gets set as the value for current_diff. In doing so, we capture the longest 
elapsed time period for that location between events. We also set the values of start_date 
and end_date for easy output later, once we are done processing this location. As mentioned 
earlier, whether or not we reset current_diff, we then change prev_date to point to 
event_date and start_time_obj equal to the current end_time_obj.
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The next time the loop encounters the condition where loc is not equal to current_loc,  
we output the currently held longest time difference between events, before we move onto  
the next event. Each print to stdout writes a row into the receiving Hive table that holds  
each location held by current_loc, the lower_bound event_date string held by 
start_date, the upper bound event_date string held by end_date, and the total  
number of days elapsed between those two dates held by current_diff.days.

There's more...
Here are a few additional notes on some of the operations touched upon in this recipe:.

SORT BY versus DISTRIBUTE BY versus CLUSTER BY versus 
ORDER BY
These four operator variants always cause confusion to Hive beginners. Here's a quick 
comparison so you'll know which one is appropriate for your use case:

 f DISTRIBUTE BY: Rows with matching column values will partition to the same 
reducer. When used alone, it does not guarantee sorted input to the reducer.

 f SORT BY: This dictates which columns to sort by when ordering reducer input records.

 f CLUSTER BY: This is a shorthand operator to perform both SORT BY and 
DISTRIBUTE BY operations on a group of columns.

 f ORDER BY: This is similar to the traditional SQL operator. Sorted order is maintained 
across all of the output from every reducer. Use this with caution as it can force all  
of the output records to a single reducer to perform the sorting. Usage with LIMIT  
is strongly recommended.

MAP and REDUCE keywords are shorthand for SELECT 
TRANSFORM
The Hive keywords MAP and REDUCE are shorthand notations for SELECT TRANSFORM, and 
do not force the query execution to jump around stages. You can use any one of the three  
and achieve the same functional results. They are simply for query readability purposes.

See also
 f The Using Hive and Python to clean and transform geographical event data in recipe 

Chapter 3, Extracting and Transforming Data
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Calculating the cosine similarity of artists in 
the Audioscrobbler dataset using Pig

Cosine similarity is used to measure the similarity of two vectors. In this recipe, it will be used 
to find the similarity of artists based on the number of times Audioscrobbler users have added 
each user to their playlist. The idea is to show how often users play both artist 1 and artist 2.

Getting ready
Download the Audioscrobbler dataset from http://www.packtpub.com/support.

How to do it...
Perform the following steps to calculate cosine similarity using Pig:

1. Copy the artist_data.txt and user_artist_data.txt files into HDFS:
hadoop fs –put artist_data.txt user_artist_data.txt /data/
audioscrobbler/

2. Load the data into Pig:
plays = load '/data/audioscrobbler/user_artist_data.txt'
        using PigStorage(' ') as (user_id:long, artist_id:long, 
playcount:long);

artist = load '/data/audioscrobbler/artist_data.txt' as (artist_
id:long, artist_name:chararray);

3. Sample the user_artist_data.txt file:
plays = sample plays .01;

4. Normalize the play counts to 100:
user_total_grp = group plays by user_id;

user_total = foreach user_total_grp generate group as user_id, 
SUM(plays.playcount) as totalplays;

plays_user_total = join plays by user_id, user_total by user_id 
using 'replicated';

norm_plays = foreach plays_user_total generate user_total::user_id 
as user_id, artist_id, ((double)playcount/(double)totalplays) * 
100.0 as norm_play_cnt;
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5. Get artist pairs for each user:
norm_plays2 = foreach norm_plays generate *;

play_pairs = join norm_plays by user_id, norm_plays2 by user_id 
using 'replicated';

play_pairs = filter play_pairs by norm_plays::plays::artist_id != 
norm_plays2::plays::artist_id;

6. Calculate cosine similarity:
cos_sim_step1 = foreach play_pairs generate ((double)norm_
plays::norm_play_cnt) * (double)norm_plays2::norm_play_cnt) as 
dot_product_step1, ((double)norm_plays::norm_play_cnt *(double) 
norm_plays::norm_play_cnt) as play1_sq;
((double)norm_plays2::norm_play_cnt *(double) norm_plays2::norm_
play_cnt) as play2_sq;

cos_sim_grp = group cos_sim_step1 by (norm_plays::plays::artist_
id, norm_plays2::plays::artist_id);

cos_sim_step2 = foreach cos_sim_grp generate flatten(group), 
COUNT(cos_sim_step1.dot_prodct_step1) as cnt, SUM(cos_sim_step1.
dot_product_step1) as dot_product, SUM(cos_sim_step1.norm_
plays::norm_play_cnt) as tot_play_sq, SUM(cos_sim_step1.norm_
plays2::norm_play_cnt) as tot_play_sq2;

cos_sim = foreach cos_sim_step2 generate group::norm_
plays::plays::artist_id as artist_id1, group::norm_plays2::plays_
artist_id as artist_id2, dot_product / (tot_play_sq1 * tot_play_
sq2) as cosine_similarity;

7. Get the artist's name:
art1 = join cos_sim by artist_id1, artist by artist_id using 
'replicated';
art2 = join art1 by artist_id2, artist by artist_id using 
'replicated';
art3 = foreach art2 generate artist_id1, art1::artist::artist_name 
as artist_name1, artist_id2, artist::artist_name as artist_name2, 
cosin_similarity;

8. To output the top 25 records:

top = order art3 by cosine_similarity DESC;
top_25 = limit top 25;
dump top25;
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The output would be:

(1000157,AC/DC,3418,Hole,0.9115799166673817)
(829,Nas,1002216,The Darkness,0.9110152004952198)
(1022845,Jessica Simpson,1002325,Mandy Moore,0.9097097460071537)
(53,Wu-Tang Clan,78,Sublime,0.9096468367168238)
(1001180,Godsmack,1234871,Devildriver,0.9093019011575069)
(1001594,Adema,1007903,Maroon 5,0.909297052154195)
(689,Bette Midler,1003904,Better Than Ezra,0.9089467492461345)
(949,Ben Folds Five,2745,Ladytron,0.908736095810886)
(1000388,Ben Folds,930,Eminem,0.9085664586931873)
(1013654,Who Da Funk,5672,Nancy Sinatra,0.9084521262343653)
(1005386,Stabbing Westward,30,Jane's Addiction,0.9075360259222892)
(1252,Travis,1275996,R.E.M.,0.9071980963712077)
(100,Phoenix,1278,Ryan Adams,0.9071754511713067)
(2247,Four Tet,1009898,A Silver Mt. Zion,0.9069623744896833)
(1037970,Kanye West,1000991,Alison Krauss,0.9058717234023009)
(352,Beck,5672,Nancy Sinatra,0.9056851798338253)
(831,Nine Inch Nails,1251,Morcheeba,0.9051453756031981)
(1007004,Journey,1005479,Mr. Mister,0.9041311825160151)
(1002470,Elton John,1000416,Ramones,0.9040551837635081)
(1200,Faith No More,1007903,Maroon 5,0.9038274644717641)
(1002850,Glassjaw,1016435,Senses Fail,0.9034604126636377)
(1004294,Thursday,2439,HiM,0.902728300518356)
(1003259,ABBA,1057704,Readymade,0.9026955950032872)
(1001590,Hybrid,791,Beenie Man,0.9020872203833108)
(1501,Wolfgang Amadeus Mozart,4569,Simon & 
Garfunkel,0.9018860912385024)

How it works...
The load statements tell Pig about the format and datatypes of the data being loaded. Pig 
loads data lazily. This means that the load statements at the beginning of this script will not 
do any work until another statement is entered that asks for output.

The user_artist_data.txt file is sampled so that a replicated join can be used when it 
is joined with itself. This significantly reduces the processing time at the cost of accuracy. The 
sample value of .01 is used, meaning that roughly one in hundred rows of data will  
be loaded.

A user selecting to play an artist is treated as a vote for that artist. The play counts are 
normalized to 100. This ensures that each user is given the same number of votes.
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A self join of the user_artist_data.txt file by user_id will generate all pairs of artists 
that users have added to their playlist. The filter removes duplicates caused by the self join.

The next few statements calculate the cosine similarity. For each pair of artists that users 
have added to their playlist, multiply the number of plays for artist 1 by the number of plays 
for artist 2. Then output the number of plays for artist 1 and the number of plays for artist 
2. Group the previous result by each pair of artists. Sum the multiplication of the number 
of plays for artist 1 by the number of plays by artist 2 for each user generated previously as 
the dot product. Sum the number of plays for artist 1 by all users. Sum the number of plays 
for artist 2 by all users. The cosine similarly is the dot product over the total plays for artist 1 
multiplied by the total plays for artist two. The idea is to show how often users play both artist 
1 and artist 2.

Trim Outliers from the Audioscrobbler 
dataset using Pig and datafu

Datafu is a Pig UDF library open sourced by the SNA team at LinkedIn. It contains many  
useful functions. This recipe will use play counts from the Audioscrobbler dataset and  
the Quantile UDF from datafu to identify and remove outliers.

Getting ready
 f Download Version 0.0.4 of datafu from https://github.com/linkedin/

datafu/downloads.

 f Uncompress and untar the files. Add the datafu-0.0.4/dist/ datafu-
0.0.4.jar file to a location accessible by Pig.

 f Download the Audioscrobbler dataset from http://www.packtpub.com/
support.

How to do it...
1. Register the datafu JAR file and construct the Quantile UDF:

register /path/to/datafu-0.0.4.jar;
define Quantile datafu.pig.stats.Quantile('.90');

2. Load the user_artist_data.txt file:
plays = load '/data/audioscrobbler.txt'using PigStorage(' ') as 
(user_id:long, artist_id:long, playcount:long);

https://github.com/linkedin/datafu/downloads
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3. Group all of the data:
plays_grp = group plays ALL;

4. Generate the ninetieth percentile value to be used as the outlier's max:
out_max = foreach plays_grp{
         ord = order plays by playcount;
          generate Quantile(ord.playcount) as ninetieth ;
          }

5. Trim outliers to the ninetieth percentile value:
trim_outliers = foreach plays generate user_id, artist_id, 
(playcount>out_max.ninetieth ? out_max.ninetieth : playcount);

6. Store the user_artist_data.txt file with outliers trimmed:

store trim_outliers into '/data/audioscrobble/outliers_trimmed.
bcp';

How it works...
This recipe takes advantage of the datafu library open sourced by LinkedIn. Once a JAR file 
is registered, all of its UDFs are available to the Pig script. The define command calls the 
constructor of the datafu.pig.stats.Quantile UDF passing it a value of .90. The 
constructor of the Quantile UDF will then create an instance that will produce the ninetieth 
percentile of the input vector it is passed. The define also aliases Quantile as shorthand 
for referencing this UDF.

The user artist data is loaded into a relation named plays. This data is then grouped by ALL. 
The ALL group is a special kind of group that creates a single bag containing all of the input.

The Quantile UDF requires that the data it has passed be sorted first. The data is sorted 
by play count, and the sorted play count's vector is passed to the Quantile UDF. The sorted 
play count simplifies the job of the Quantile UDF. It now picks the value at the ninetieth 
percentile position and returns it.

This value is then compared against each of the play counts in the user artist file. If the play 
count is greater, it is trimmed down to the value returned by the Quantile UDF, otherwise 
the value remains as it is.

The updated user artist file with outliers trimmed is then stored back in HDFS to be used  
for further processing.
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There's more...
The datafu library also includes a StreamingQuantile UDF. This UDF is similar to the 
Quantile UDF except that it does not require the data to be sorted before it is used. This  
will greatly increase the performance of this operation. However, it does come at a cost.  
The StreamingQuantile UDF only provides an estimation of the values.

define Quantile datafu.pig.stats.StreamingQuantile('.90');
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Advanced Big  
Data Analysis

In this chapter, we will cover:

 f PageRank with Apache Giraph

 f Single-source shortest-path with Apache Giraph

 f Using Apache Giraph to perform a distributed breadth-first search

 f Collaborative filtering with Apache Mahout

 f Clustering with Apache Mahout

 f Sentiment classification with Apache Mahout

Introduction
Graph and machine learning problems are hard to solve using the MapReduce framework. 
Most of these problems require iterative steps and/or knowledge of complex algorithms, 
which can be cumbersome to implement in MapReduce. Luckily, there are two frameworks 
available to help with graph and machine learning problems in the Hadoop environment. 
Apache Giraph is a graph-processing framework designed to run large-scale algorithms. 
Apache Mahout is a framework that provides implementations of distributed machine 
learning algorithms.

This chapter will introduce readers to these two frameworks, which are capable of  
leveraging the distributed power of MapReduce.
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PageRank with Apache Giraph
This recipe is primarily aimed at building and testing the default Apache Giraph PageRank 
example, modeled after the Google Pregel implementation. It will demonstrate the steps 
involved in submitting and executing a Giraph job to a pseudo-distributed Hadoop cluster.

Getting ready
For first-time Giraph users, we recommend running this recipe using a pseudo-distributed 
Hadoop cluster.

For the client machine, you will need Subversion and Maven installed and configured on the 
user environment path.

This recipe does not require a full understanding of the Giraph API, but it does assume some 
familiarity with Bulk Synchronous Parallel (BSP) and the design goals of vertex-centric APIs 
including Apache Giraph and Google Pregel.

How to do it...
Carry out the following steps to build and test the default Giraph PageRank example:

1. Navigate to a base folder and perform an SVN checkout of the latest Giraph source, 
located at the official Apache site:
$ svn co https://svn.apache.org/repos/asf/giraph/trunk

2. Change the folder into a trunk and run the build:
$ mvn compile

3. Once the build finishes, navigate to the target folder created in the trunk and you 
should see the JAR file giraph-0.2-SNAPSHOT-jar-with-dependencies.jar.

4. Run the following command:
hadoop jar giraph-0.2-SNAPSHOT-jar-with-dependencies.jar org.
apache.giraph.benchmark.PageRankBenchmark -V 1000 -e 1 -s 5 -w 1 
-v

5. You should see the job execute and the MapReduce command line output show 
success.

6. The Giraph stats counter group in the printout should show the following stats:

INFO mapred.JobClient:   Giraph Stats

INFO mapred.JobClient:     Aggregate edges=1000

mapred.JobClient:     Superstep=6
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mapred.JobClient:     Last checkpointed superstep=0

mapred.JobClient:     Current workers=1

mapred.JobClient:     Current master task partition=0

mapred.JobClient:     Sent messages=0

mapred.JobClient:     Aggregate finished vertices=1000

mapred.JobClient:     Aggregate vertices=1000

How it works...
First, we use Subversion to check out the latest source from the official Apache site. Once we 
build the JAR file, the PageRankBenchmark example job is available for submission. Before 
we are ready to test Giraph, we must set the following command line options:

 f -V: This shows the number of total vertices to run through PageRank. We chose 
1000 just for testing. For a more accurate testing we would want millions of vertices 
over a fully-distributed cluster.

 f -e: This shows the number of outgoing edges defined for each vertex. This will control 
the number of messages that are output during each superstep to any neighboring 
vertices, where a neighbor is defined as a vertex connected to another vertex by one 
or more edges.

 f -s: This shows the total number of supersteps to run before terminating PageRank.

 f -w: This shows the total number of workers available to handle distinct graph 
partitions. Since we are running a pseudo-distributed cluster (single host), it is safe to 
limit this to one. In a fully-distributed cluster, we would want multiple workers spread 
out across different physical hosts.

 f -v: This activates the verbose mode to follow the job progress on the console.

The job contains no additional classpath dependencies outside of core Hadoop/ZooKeeper. It 
can be directly submitted to the cluster via the hadoop jar command from the command line.

The PageRankBenchmark example does not output the results back to HDFS. It is designed 
primarily to test and expose certain cluster bottlenecks that might hinder other production 
Giraph jobs. Running the job against a large number of vertices with multiple edges may 
expose memory constraints, network I/O connectivity issues between workers, and other 
potential problems.

There's more...
Apache Giraph is a relatively new open source batch computation framework. The following 
tips will help you further your understanding:
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Keep up with the Apache Giraph community
Apache Giraph has a very active developer community. The API is constantly being enhanced 
with new features, bug fixes, and occasional refactoring. It is a good idea to update your 
source from trunk at least once a week. At the time of this writing, Giraph has no public 
Maven artifact. This will change in the very near future, but for now SVN is required to pull 
source updates.

Read and understand the Google Pregel paper
Somewhere in 2009, Google published a research paper describing in high-level technical 
detail their proprietary software, which was made for scalable graph-centric processing based 
on the Bulk Synchronous Parallel (BSP) model.

Apache Giraph is an open source implementation of many of the concepts found in this 
research paper. Familiarity with the Pregel design will help to explain many components  
found in the Giraph codebase.

A basic introduction to BSP can be found on Wikipedia at http://en.wikipedia.org/
wiki/Bulk_Synchronous_Parallel.

See also
 f Single-source shortest-path with Apache Giraph

 f Using Apache Giraph to perform a distributed breadth-first search

Single-source shortest-path with Apache 
Giraph

In this recipe, we will implement a variant of the Google Pregel shortest-path implementation 
between employees connected via an acyclic directed graph. The code will take a single 
source ID, and for all vertices in the graph, will mark the minimum number of hops required 
to reach each vertex from the source ID vertex. The employee network is stored in HDFS as a 
line-separated list of RDF triples. Resource Description Framework (RDF) is a very effective 
data format for representing entities and the relationships between them.

Getting ready
Make sure you have a basic familiarity with Google Pregel/BSP and the Giraph API.

You will need access to a pseudo-distributed Hadoop cluster. The code listed in this recipe 
uses a non-split master-worker configuration that is not ideal in fully-distributed environments. 
It also assumes that you have familiarity with bash shell scripting.
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You will need to load the example dataset gooftech.tsv to an HDFS folder located at  
/input/gooftech.

You will also need to package this code inside a JAR file to be executed by the Hadoop 
JAR launcher from the shell. The shell script listed in the recipe shows a template for job 
submission with the correct classpath dependencies.

How to do it...
Carry out the following steps to implement the shortest path in Giraph:

1. First, we define our custom InputFormat that extends TextInputFormat 
to read the employee RDF triples from the text. Save the class as 
EmployeeRDFTextInputFormat.java in a package of your choice:
import com.google.common.collect.Maps;
import org.apache.giraph.graph.BspUtils;
import org.apache.giraph.graph.Vertex;
import org.apache.giraph.graph.VertexReader;
import org.apache.giraph.lib.TextVertexInputFormat;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;

import java.io.IOException;
import java.util.Map;
import java.util.regex.Pattern;

public class EmployeeRDFTextInputFormat extends
             TextVertexInputFormat<Text, IntWritable, 
NullWritable, IntWritable> {

  @Override
  public VertexReader<Text, IntWritable, NullWritable, 
                      IntWritable>
  createVertexReader(InputSplit split, TaskAttemptContext context)
    throws IOException {
    return new EmployeeRDFVertexReader(
        textInputFormat.createRecordReader(split, context));
  }
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2. We write the custom vertex reader used in the input format as a static inner class:
  public static class EmployeeRDFVertexReader extends
      TextVertexInputFormat.TextVertexReader<Text, 
IntWritable, NullWritable, IntWritable> {

    private static final Pattern TAB = Pattern.compile("[\\t]");
    private static final Pattern COLON = Pattern.compile("[:]");
    private static final Pattern COMMA = Pattern.compile("[,]");

    public EmployeeRDFVertexReader(RecordReader<LongWritable, 
Text> lineReader) {
      super(lineReader);
    }

3. Override the getCurrentVertex() method. This method is where we use the line 
reader to parse our custom vertex objects:
    @Override
    public Vertex<Text, IntWritable, NullWritable, IntWritable>
    getCurrentVertex() throws IOException, InterruptedException {
      Vertex<Text, IntWritable, NullWritable, IntWritable>
      vertex = BspUtils.<Text, IntWritable, NullWritable,
      IntWritable>
      createVertex(getContext().getConfiguration());

      String[] tokens = TAB.split(getRecordReader()
          .getCurrentValue().toString());
      Text vertexId = new Text(tokens[0]);

      IntWritable value = new IntWritable(0);
      String subtoken = COLON.split(tokens[2])[1];
      String[] subs = COMMA.split(subtoken);
      Map<Text, NullWritable> edges =
          Maps.newHashMapWithExpectedSize(subs.length);
      for(String sub : subs) {
         if(!sub.equals("none"))
            edges.put(new Text(sub), NullWritable.get());
      }

      vertex.initialize(vertexId, value, edges, null);
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      return vertex;
    }

    @Override
    public boolean nextVertex() throws IOException, 
InterruptedException {
      return getRecordReader().nextKeyValue();
    }
  }
}

4. The job setup code, vertex class, and custom output format are all contained in a 
single class. Save the following code in a package of your choice to a class named 
EmployeeShortestPath.java:
import org.apache.giraph.graph.*;
import org.apache.giraph.lib.TextVertexOutputFormat;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.io.IOException;

/**
 * Value based on number of hops. vertices receiving incoming 
messages increment the message
 */
public class EmployeeShortestPath implements Tool{

    public static final String NAME = "emp_shortest_path";

    private Configuration conf;
    private static final String SOURCE_ID = "emp_source_id";

    public EmployeeShortestPath(Configuration  
                                  configuration) {
        conf = configuration;
    }



Advanced Big Data Analysis

184

5. The run() method in the following code snippet sets up the Giraph job configuration:
    @Override
    public int run(String[] args) throws Exception {
        if(args.length < 4) {
            System.err.println(printUsage());
            System.exit(1);
        }
        if(args.length > 4) {
            System.err.println("too many arguments. " +
                    "Did you forget to quote the source ID 
name ('firstname lastname')");
            System.exit(1);
        }
        String input = args[0];
        String output = args[1];
        String source_id = args[2];
        String zooQuorum = args[3];

        conf.set(SOURCE_ID, source_id);
        conf.setBoolean(GiraphJob.SPLIT_MASTER_WORKER, 
                         false);
        conf.setBoolean(GiraphJob.USE_SUPERSTEP_COUNTERS, 
                         false);
        conf.setInt(GiraphJob.CHECKPOINT_FREQUENCY, 0);
        GiraphJob job = new GiraphJob(conf, "single-source 
          shortest path for employee: " + source_id);
        job.setVertexClass(EmployeeShortestPathVertex.class);
        job.setVertexInputFormatClass(EmployeeRDFTextInputFormat.
class);
     job.setVertexOutputFormatClass(EmployeeShortestPathOutputForm
at.class);
        job.setZooKeeperConfiguration(zooQuorum);

        FileInputFormat.addInputPath(job.getInternalJob(), new 
Path(input));
        FileOutputFormat.setOutputPath(job.getInternalJob(), 
removeAndSetOutput(output));

        job.setWorkerConfiguration(1, 1, 100.0f);   
        return job.run(true) ? 0 : 1;
    }
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6. The following, method force deletes the supplied output folder in HDFS. Use it with 
caution. The other methods are required to conform to the Tool interface:
    private Path removeAndSetOutput(String outputDir) throws 
IOException {
        FileSystem fs = FileSystem.get(conf);
        Path path = new Path(outputDir);
        fs.delete(path, true);
        return path;
    }

    private String printUsage() {
        return "usage: <input> <output> <single quoted source_id> 
<zookeeper_quorum>";
    }

    @Override
    public void setConf(Configuration conf) {
        this.conf = conf;
    }

    @Override
    public Configuration getConf() {
        return conf;
    }

7. The main() method instantiates and submits the job using ToolRunner:
    public static void main(String[] args) throws Exception {
        System.exit(ToolRunner.run(new EmployeeShortestPath(new 
Configuration()), args));
    }

8. The static inner class EmployeeShortestPathVertex lets us define a custom 
compute method to be used during each superstep:
    public static class EmployeeShortestPathVertex<I extends 
WritableComparable,
            V extends Writable, E extends Writable, M extends 
Writable> extends EdgeListVertex <Text, IntWritable, NullWritable, 
IntWritable>
    {

        private IntWritable max = new IntWritable(Integer.MAX_
VALUE);
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        private IntWritable msg = new IntWritable(1);

        private boolean isSource() {
            return getId().toString().equals(
                    getConf().get(SOURCE_ID));
        }

        @Override
        public void compute(Iterable<IntWritable> messages) 
                           throws IOException {
            if(getSuperstep() == 0) {
                setValue(max);
                if(isSource()) {
                    for(Edge<Text, NullWritable> e : 
                        getEdges()) {
                        sendMessage(e.getTargetVertexId(), 
                                    msg);
                    }
                }
            }
            int min = getValue().get();
            for(IntWritable msg : messages) {
                min = Math.min(msg.get(), min);
            }
            if(min < getValue().get()) {
                setValue(new IntWritable(min));
                msg.set(min + 1);
                sendMessageToAllEdges(msg);
            }
            voteToHalt();
        }
    }

9. The static inner class EmployeeShortestPathOutputFormat lets us define a 
custom OutputFormat. The class EmployeeRDFVertexWriter lets us output our 
vertex information as Text key-value pairs back to HDFS:
    public static class EmployeeShortestPathOutputFormat extends 
TextVertexOutputFormat <Text, IntWritable, NullWritable> {

        private static class EmployeeRDFVertexWriter
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                extends TextVertexWriter <Text, IntWritable, 
NullWritable> {

            private Text valOut = new Text();

            public EmployeeRDFVertexWriter(
                    RecordWriter<Text, Text> lineRecordWriter) {
                super(lineRecordWriter);
            }

            @Override
            public void writeVertex(
                    Vertex<Text, IntWritable, NullWritable, 
                           ?> vertex)
                    throws IOException, 
                                     InterruptedException {

                valOut.set(vertex.getValue().toString());
                if(vertex.getValue().get() == 
                                       Integer.MAX_VALUE)
                    valOut.set("no path");
                getRecordWriter().write(vertex.getId(), 
                                        valOut);
            }

        }

        @Override
        public VertexWriter<Text, IntWritable, NullWritable>
        createVertexWriter(TaskAttemptContext context)
                throws IOException, InterruptedException {
            RecordWriter<Text, Text> recordWriter =
                    textOutputFormat.getRecordWriter(context);
            return new EmployeeRDFVertexWriter(recordWriter);
        }
    }
}

10. Create the shell script run_employee_shortest_path.sh using the commands 
listed in the following code snippet. Change GIRAPH_PATH to match your local path 
to the Giraph JAR file and change JAR_PATH to match your local path to the custom 
JAR file that you compiled the previous code in.
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To use the alias emp_shortest_path your custom JAR file must 
use the Hadoop Driver class for its main class.

GIRAPH_PATH=lib/giraph/giraph-0.2-SNAPSHOT-jar-with-dependencies.
jar

HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$GIRAPH_PATH

JAR_PATH=dist/employee_examples.jar

export HADOOP_CLASSPATH

hadoop jar $JAR_PATH emp_shortest_path -libjars $GIRAPH_
PATH,$JAR_PATH /input/gooftech /output/gooftech 'Shanae Dailey' 
localhost:2181

11. Run run_employee_shortest_path.sh. The job should be submitted to the 
Hadoop cluster. Under /output/gooftech should be a single part file that lists 
minimum number of hops required to reach each employee from source ID, or no 
path if the employee is not reachable.

How it works...
We start with the custom input format. The Giraph API offers TextVertexInputFormat that 
wraps TextInputFormat and LineReader to read vertices stored one per line in a text 
file. Currently, the Giraph API requires your records to be sorted in order of the vertex ID. Our 
employee dataset is sorted by firstname/lastname, so we satisfy this requirement and 
can move forward. In order to create meaningful vertices from our RDF data, it is necessary 
that we subclass TextVertexInputFormat to create EmployeeRDFTextInputFormat. 
In order to control exactly how our vertices appear, we subclass TextVertexReader and 
create EmployeeRDFVertexReader. This allows us to override the getRecordReader() 
method in our custom input format to return an instance of our own reader subclass. The 
record reader delegates for an instance of the Hadoop LineReader and is responsible for 
creating the vertices from the text lines seen in each input split. From here we can override 
getCurrentVertex() and create individual vertices from each incoming RDF triple seen 
by the line reader. By extending TextVertexReader we don't have to worry about manually 
controlling the invocation of getCurrentVertex() for each line. The framework handles 
this for us. We simply need to tell the framework how to turn each line of text into a vertex with 
one or more edges.

The generic type parameters declared in the definition of EmployeeRDFTextInputFormat 
are repeatedly seen in the code. From left to right, they provide the concrete type information 
for the vertex ID class, vertex value class, edge value class, and message class. A quick look 
at the parent class shows the following generic header:

public abstract class TextVertexInputFormat<I extends 
WritableComparable,
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    V extends Writable, E extends Writable, M extends Writable>
    extends VertexInputFormat<I, V, E, M> 

All four of the generic types must be Writable. The vertex ID class must be 
WritableComparable. Currently, Giraph does not support other serialization frameworks.

Our getCurrentVertex() method implementation is very basic. We set up several static 
final regex patterns to split the RDF triples properly. The combination firstname/lastname 
becomes our vertex ID stored as a Text instance. Each vertex is initialized with a vertex 
value of 0 stored as an IntWritable. Each subordinate listed in the comma-delimited list is 
referenced as an edge ID; however, we don't need any direct value information for each edge, 
and thus NullWritable will suffice for the edge value. For this particular job, our message 
types will be IntWritable. This class is reused in the next recipe in this chapter titled Using 
Apache Giraph to perform a distributed breadth-first search. For the sake of brevity, this input 
format is only explained once here.

Next, we set up our job class. The job setup borrows heavily from the Hadoop MapReduce 
Java API. We implement the Tool interface and define four arguments to read from the 
command line. This job requires an input folder from HDFS, and an output folder to write 
back to HDFS, a source ID to perform single source shortest-path, and a ZooKeeper quorum 
to manage the job state. Then we need to define a few other parameters as we are testing 
against a pseudo-distributed cluster with limited resources.

conf.setBoolean(GiraphJob.SPLIT_MASTER_WORKER, false);
conf.setBoolean(GiraphJob.USE_SUPERSTEP_COUNTERS, false);
conf.setInt(GiraphJob.CHECKPOINT_FREQUENCY, 0);

SPLIT_MASTER_WORKER tells Giraph whether or not the master process runs on a different 
host to the workers. By default, this is set to true, but since we are on a pseudo-distributed 
single node setup, this needs to be false. Turning off superstep counters will limit the 
verbosity of the MapReduce WebUI for our job. This is can be handy when testing jobs 
involving hundreds or potentially thousands of supersteps. Lastly, we turn off checkpointing to 
tell Giraph that we do not care about backing up the graph state at any superstep. This works 
because we are only testing and are interested in rapid job execution time. In a production 
job, it is recommended to checkpoint your graph state regularly at the cost of a slower overall 
job runtime. We then instantiate an instance of GiraphJob and pass our configuration 
instance to it along with a somewhat descriptive title for the job.

The next three lines of code are critical for the Giraph job to execute properly on your cluster.

job.setVertexClass(EmployeeShortestPathVertex.class);
job.setVertexInputFormatClass(EmployeeRDFTextInputFormat.class);
job.setVertexOutputFormatClass(EmployeeShortestPathOutputFormat.
class);
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The first line tells Giraph about our custom Vertex implementation that encapsulates each 
vertex in the graph. This houses the application-specific compute() function called at each 
superstep. We extend the base class EdgeListVertex to leverage some pre-existing code 
for message handling, edge iteration, and member serialization.

Then, we set the ZooKeeper quorum and define a single worker to hold the graph partition. If 
your pseudo-distributed cluster can support multiple workers (multiple concurrent map JVMs), 
then feel free to increase this limit. Just remember to leave one free map slot for the master 
process. Finally, we are ready to submit the job to the cluster.

After the InputFormat handles creating the vertices from the different input splits, 
each vertex's compute() function gets invoked. We define the static inner class 
EmployeeShortestPathVertex to override the compute() function and implement the 
business logic necessary to calculate the shortest path. Specifically, we are interested in the 
minimum number of hops required to navigate from the source vertex to every other vertex 
connected by one or more pathways in the graph, or no path if the target vertex is not 
reachable by the source.

First superstep (S0)
At S0, the function immediately enters the first conditional statement and initializes every 
vertex value to the maximum possible integer value. As incoming messages are received, 
each vertex compares the integer contained in each message against the currently held 
minimum to see if it represents a lower value, therefore the business logic is made a bit 
easier by setting the initial minimum value to the maximum possible for the datatype. During 
the first superstep, it is critical that the source vertex sends a message to its edges telling the 
vertex along that the edge is one hop away from the source. To do this, we define a member 
instance msg just for messaging. It is reset and reused every time the vertex needs to send  
a message, and helps to avoid unnecessary instantiation.

We need to compare any incoming messages with the currently held minimum hops value 
to see if we need to update and notify our edges. Since we are only at S0 there are no 
messages, so the value remains as Integer.MAX. Since the minimum value does not 
change, we avoid the last conditional branch.

At the end of each superstep for our job, always invoke voteToHalt(). The Giraph 
framework will automatically have reactive vertices that have incoming messages at the 
next superstep, but we want to render vertices inactive that are temporarily done sending/
receiving messages. Once there are no more messages to process by any vertex in the  
graph, the job will stop reactivating vertices and will consider itself finished.
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Second superstep (S1)
After the previous superstep, every single vertex in the graph voted to halt the execution. 
The only vertex that messaged its edges was the source vertex, therefore the framework will 
reactivate only the vertices connected by the source edges. The source vertex told each edge 
that they were one hop away, which is less than Integer.MAX and immediately takes the 
place as the current vertex value. Each vertex receiving the message turns around and notifies 
its edges that they are min + 1 hops away from the source, and the cycle continues.

Should any connected edge receive a message lower than its current vertex value, that 
indicates there is a path from the source ID to the current vertex that involves fewer hops,  
and we need to re-notify each edge connected to the current vertex.

Eventually, every vertex will know its minimum distance and no more messages will be sent  
at the current superstep N. When starting superstep N + 1, there will be no vertices that  
need to be reactivated to process incoming messages, and the overall job will finish. Now  
we need to output each vertex's current value denoting the minimum number of hops from 
the source vertex.

To write the vertex value information back to HDFS as text, we implement a static inner 
subclass of TextVertexOutputFormat named EmployeeShortestPathOutputFormat. 
This follows a similar inheritance/delegation pattern as our custom InputFormat defined 
earlier, except instead of delegating to a custom RecordReader, we use a custom 
RecordWriter. We set a Text member variable valOut to reuse while outputting the 
integer values as strings. The framework automatically handles invoking writeVertex()  
for each vertex contained in our dataset.

If the current vertex value is still equal to Integer.MAX, we know that the graph never 
received any incoming messages intended for that vertex, which implies it is not traversable 
by the source vertex. Otherwise, we output the minimum number of hops required to traverse 
to the current vertex ID from the source ID.

See also
 f Using Apache Giraph to perform a distributed breadth-first search
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Using Apache Giraph to perform a 
distributed breadth-first search

In this recipe, we will use the Apache Giraph API to implement a distributed breadth-first 
search to determine if two employees are connected in the company's network via one 
or more pathways. The code will rely on message passing between employee vertices to 
determine if a vertex is reachable.

Getting ready
Make sure you have a basic familiarity with Google Pregel/BSP and the Giraph API.

You will need access to a pseudo-distributed Hadoop cluster. The code listed in this recipe 
uses a split master worker configuration that is not ideal in fully-distributed environments.  
It also assumes familiarity with bash shell scripting.

You will need to load the example dataset gooftech.tsv to an HDFS folder located at /
input/gooftech.

You will also need to package this code inside a JAR file to be executed by the Hadoop JAR 
launcher from the shell. The shell script listed in the recipe will show a template for job 
submission with the correct classpath dependencies.

How to do it...
Carry out the following steps to perform a breadth-first search in Giraph:

1. Implement EmployeeRDFTextInputFormat.java. See steps 1 to 3 in the How  
to do it… section of the Single-source shortest-path with Apache Giraph recipe.

2. The job setup code, vertex class, and custom output format are all contained in a 
single class. Save the following code in a package of your choice to a class with the 
name EmployeeBreadthFirstSearch.java:
import org.apache.giraph.graph.*;
import org.apache.giraph.lib.TextVertexOutputFormat;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
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import org.apache.hadoop.util.ToolRunner;

import java.io.IOException;

/**
 * Start with specified employee, mark the target if message is 
received
 */
public class EmployeeBreadthFirstSearch implements Tool{

    public static final String NAME = "emp_breadth_search";

    private Configuration conf;
    private static final String SOURCE_ID = "emp_src_id";
    private static final String DEST_ID = "emp_dest_id";

    public EmployeeBreadthFirstSearch(Configuration configuration) 
{
        conf = configuration;
    }

3. The run() method in the following code sets up the Giraph job configuration:
    @Override
    public int run(String[] args) throws Exception {
        if(args.length < 5) {
            System.err.println(printUsage());
            System.exit(1);
        }
        if(args.length > 5) {
            System.err.println("too many arguments. " +"Did you 
forget to quote the source or destination ID name ('firstname 
lastname')");
            System.exit(1);
        }
        String input = args[0];
        String output = args[1];
        String source_id = args[2];
        String dest_id = args[3];
        String zooQuorum = args[4];

        conf.set(SOURCE_ID, source_id);
        conf.set(DEST_ID, dest_id);
        conf.setBoolean(GiraphJob.SPLIT_MASTER_WORKER, 
                        false);
        conf.setBoolean(GiraphJob.USE_SUPERSTEP_COUNTERS, 
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                        false);
        conf.setInt(GiraphJob.CHECKPOINT_FREQUENCY, 0);
        GiraphJob job = new GiraphJob(conf,  "determine 
connectivity between " + source_id + " and " + dest_id);
        job.setVertexClass(EmployeeSearchVertex.class); 
job.setVertexInputFormatClass(EmployeeRDFTextInputFormat.cl
                              ass);
        job.setVertexOutputFormatClass(BreadthFirstTextOutputForm
at.class);
        job.setZooKeeperConfiguration(zooQuorum);

        FileInputFormat.addInputPath(job.getInternalJob(), 
                                     new Path(input));
        FileOutputFormat.setOutputPath(job.getInternalJob(), 
                               removeAndSetOutput(output));

        job.setWorkerConfiguration(1, 1, 100.0f);   

        if(job.run(true)) {
            long srcCounter = job.getInternalJob().getCounters().
                     getGroup("Search").findCounter("Source 
                             Id found").getValue();
            long dstCounter = 
job.getInternalJob().getCounters().getGroup("Search").
findCounter("Dest Id found").getValue();
            if(srcCounter == 0 || dstCounter == 0) {
                 System.out.println("Source and/or Dest Id not 
found in dataset. Check your arguments.");
            }
            return 0;
        } else {
            return 1;
        }
    }

4. The following, method force deletes the supplied output folder in HDFS. Use it with 
caution. The other methods are required to conform to the Tool interface:
    private Path removeAndSetOutput(String outputDir) throws 
IOException {
        FileSystem fs = FileSystem.get(conf);
        Path path = new Path(outputDir);
        fs.delete(path, true);
        return path;
    }
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    private String printUsage() {
        return "usage: <input> <output> <single quoted source_id> 
<single quoted dest_id> <zookeeper_quorum>";
    }

    @Override
    public void setConf(Configuration conf) {
        this.conf = conf;
    }

    @Override
    public Configuration getConf() {
        return conf;
    }

5. The main() method instantiates and submits the job using ToolRunner:
    public static void main(String[] args) throws Exception {
        System.exit(ToolRunner.run(new 
EmployeeBreadthFirstSearch(new Configuration()), args));
    }

6. The static inner class, EmployeeSearchVertex, lets us define a custom compute 
method to be used during each superstep:
    public static class EmployeeSearchVertex<I extends 
WritableComparable, V extends Writable, E extends Writable, M 
extends Writable> extends EdgeListVertex<Text, IntWritable, 
NullWritable, IntWritable> {

        private IntWritable msg = new IntWritable(1);

        private boolean isSource() {
            return getId().toString().equals(
                    getConf().get(SOURCE_ID));
        }

        private boolean isDest() {
            return getId().toString().equals(
                    getConf().get(DEST_ID));
        }

        @Override
        public void compute(Iterable<IntWritable> messages) throws 
IOException {
            if(getSuperstep() == 0) {
                if(isSource()) {
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                    getContext().getCounter("Search", "Source Id 
found").increment(1);
                    sendMessageToAllEdges(msg);
                }  else if(isDest()){
                    getContext().getCounter("Search", "Dest Id 
found").increment(1l);
                }
            }
            boolean connectedToSourceId = false;
            for(IntWritable msg : messages) {
                if(isDest()) {
                    setValue(msg);
                }
                connectedToSourceId = true;
            }
            if(connectedToSourceId)
                sendMessageToAllEdges(msg);
            voteToHalt();
        }
    }

7. The static inner class, BreadthFirstTextOutputFormat, lets us define a custom 
OutputFormat. The BreadtFirstTextOutputFormat class lets us output our 
vertex information as Text key-value pairs back to HDFS:
    public static class BreadthFirstTextOutputFormat extends
            TextVertexOutputFormat <Text, IntWritable, 
NullWritable> {

        private static class EmployeeRDFVertexWriter
                extends TextVertexWriter <Text, IntWritable, 
NullWritable> {

            private Text valOut = new Text();
            private String sourceId = null;
            private String destId = null;

            public EmployeeRDFVertexWriter(
                    String sourceId, String destId, 
RecordWriter<Text, Text> lineRecordWriter) {
                super(lineRecordWriter);
                this.sourceId = sourceId;
                this.destId = destId;
            }

            @Override
            public void writeVertex(
                    Vertex<Text, IntWritable, NullWritable, ?> 
vertex)
                    throws IOException, InterruptedException {
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                if(vertex.getId().toString().equals(destId)) {
                    if(vertex.getValue().get() > 0) {
                        getRecordWriter().write(new Text(sourceId 
+ " is connected to " + destId), new Text(""));
                    } else {
                        getRecordWriter().write(new Text(sourceId 
+ " is not connected to " + destId), new Text(""));
                    }
                }
            }
        }

        @Override
        public VertexWriter<Text, IntWritable, NullWritable>
        createVertexWriter(TaskAttemptContext context)
                throws IOException, InterruptedException {
            RecordWriter<Text, Text> recordWriter =
                    textOutputFormat.getRecordWriter(context);
            String sourceId = context.getConfiguration().
get(SOURCE_ID);
            String destId = context.getConfiguration().get(DEST_
ID);
            return new EmployeeRDFVertexWriter(sourceId, destId, 
recordWriter);
        }
    }

}

8. Create the shell script run_employee_connectivity_search.sh using the 
commands listed in the following code snippet. Change GIRAPH_PATH to match your 
local path to the Giraph JAR file and change JAR_PATH to match the local path to 
your own custom JAR file that you compiled using the preceding code.

To use the alias emp_breadth_first, your custom JAR file 
must use the Hadoop Driver class as its main class in the 
JAR file.

GIRAPH_PATH=lib/giraph/giraph-0.2-SNAPSHOT-jar-with-dependencies.
jar
HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$GIRAPH_PATH
JAR_PATH=dist/employee_examples.jar
export HADOOP_CLASSPATH
hadoop jar $JAR_PATH emp_breadth_search -libjars $GIRAPH_
PATH,$JAR_PATH /input/gooftech /output/gooftech 'Valery Dorado' 
'Gertha Linda' localhost:2181
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9. Run run_employee_connectivity_search.sh. You should see the job 
submitted to the Hadoop cluster. Upon successful completion, you should see 
a single part file under /output/gooftech saying Valery Dorado is not 
connected to Gertha Linda.

10. Open run_employee_connectivity_search.sh. Change the source ID  
to Shoshana Gatton. Save and close the script.

11. Run run_employee_connectivity_search.sh. The output should now  
be Shoshana Gatton is connected to Gertha Linda.

How it works...
To understand how the custom InputFormat and job setup works, check out the How it 
works… section from the recipe titled Single-source shortest-path using Apache Giraph.  
This recipe uses exactly the same input format, and the same job setup, except for the  
following differences:

 f The job requires an additional DEST_ID argument to be supplied by the  
command line.

 f The Vertex implementation is EmployeeSearchVertex.
 f The OutputFormat subclass is set to the static inner class 

BreadthFirstTextOutputFormat. This is explained in more detail in the 
following paragraph.

 f We use counters during the job execution to determine if the supplied source/
destination IDs are found in the dataset.

The compute() function inside EmployeeSearchVertex is where we take advantage of 
Giraph message passing to determine reachability. Starting at the first superstep, we send a 
message to each edge from the source ID. If we find the supplied source IDs and destination 
IDs in the dataset vertices, we increment the counters to let the user know. This will help us 
quickly see any incorrectly entered command-line arguments for source/destination vertex 
IDs. After the first superstep, both these counters should be set to 1. We define a private 
constant member variable msg that is set to 1. The actual numeric content of the message 
is never used, but by keeping the vertex value as IntWritable we can use the already built 
custom InputFormat EmployeeRDFTextInputFormat. If during any superstep a vertex 
receives a message, we forward that message along to each of its edges. If the destination 
vertex ever receives a message, we set its value to the integer 1 contained in the message. 
By the end of the job execution, the destination vertex will have a value of 1, which means it 
is connected by one or more edges to the source vertex, or to the initial value of 0, meaning it 
never received a message and is not connected.
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We define the static inner class BreadthFirstTextOutputFormat to handle the 
output formatting. This follows a similar inheritance/delegation pattern to our custom 
InputFormat defined earlier, except instead of delegating to a custom RecordReader, 
we use a custom RecordWriter. When we instantiate our TextVertexWriter 
subclass EmployeeRDFVertexWriter, we pass its references to the configured source 
and destination vertex IDs. The framework handles this automatically by calling the 
writeVertex() method for each vertex in our dataset. For this job, we are only interested 
in printing out whether or not the source vertex is connected by one or more paths to the 
destination vertex. If the current vertex we are processing is the destination vertex, we will 
printout one of two strings. If the vertex value is greater than 0, then that destination must 
have received one or more messages, which is only possible if there exists at least one path 
of edge communication between the source and destination. Otherwise, if the value of the 
destination vertex is still 0, then we can safely assume that it is not reachable by the source. 
For just one pair of source-destination nodes, as we have in this recipe, we could have placed 
this business logic directly in the job class and used counters after the execution finished,  
but this design is more extensible should we want to use this code to query multiple 
destination-source vertex pairs.

There's more...
Programs designed using the Hadoop MapReduce API usually require some additional tuning 
once you begin testing at scale. It is not uncommon to completely re-evaluate a chosen design 
pattern that simply does not scale. Working with the Giraph API requires the same diligence 
and patience.

Apache Giraph jobs often require scalability tuning
This is not always easy to spot initially. You may have a relatively small graph that operates 
very well within a given BSP design approach. Suddenly you hit scale and notice all sorts 
of errors you never planned for. Try to keep your compute() function small to avoid 
complications and aid with troubleshooting. At the time of this writing, Giraph workers 
will attempt to hold their assigned graph partitions directly in memory. Minimizing vertex 
memory footprint is of the upmost importance. Moreover, many people have to tune their 
message passing settings using the parameters located at the top of GiraphJob. You can 
control the number of messaging threads used by each worker to communicate with other 
workers by setting MSG_NUM_FLUSH_THREADS. By default, Giraph will let each worker open 
a communication thread to every other worker in the job. For many Hadoop clusters, this is 
not sustainable. Also, consider adjusting the maximum number of messages allowed to be 
flushed in bulk using MAX_MESSAGES_PER_FLUSH_PUT. The default value 2000 may not  
be adequate for your job.
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Collaborative filtering with Apache Mahout
Collaborative filtering is a technique that can be used to discover relationships between 
people and items (for example, books and music). It works by examining the preferences of a 
set of users, such as the items they purchase, and then determines which users have similar 
preferences. Collaborative filtering can be used to build recommender systems. Recommender 
systems are used by many companies including Amazon, LinkedIn, and Facebook.

In this recipe, we are going to use Apache Mahout to generate book recommendations based 
on a dataset containing people's book preferences.

Getting ready
You will need to download, compile, and install the following:

 f Maven 2.2 or above from http://maven.apache.org/
 f Apache Mahout 0.6 from http://mahout.apache.org/
 f CSV Dump of Book-Crossing Dataset from http://www.informatik.uni-

freiburg.de/~cziegler/BX/

 f Scripts for this chapter from http://packtpub.com/support

Once you have compiled Mahout, add the mahout binary to the system path. In addition, you 
must set the HADOOP_HOME environment variable to point to the root folder of your Hadoop 
installation. You can accomplish this in the bash shell by using the following commands:

$ export PATH=$PATH:/path/to/mahout/bin

$ export HADOOP_HOME=/opt/mapr/hadoop/hadoop-0.20.2

Next, extract the Book-Crossing Dataset to the folder you are currently working on. You should 
see three files named BX-Books.csv, BX-Book-Ratings.csv, and BX-Users.csv.

How to do it...
Carry out the following steps to perform Collaborative filtering in Mahout:

1. Run the clean_book_ratings.py script to transform the BX-Book-Ratings.
csv file into a format the Mahout recommender can use.
$ ./clean_book_ratings.py BX-Book-Ratings.csv cleaned_book_
ratings.txt

2. Run the clean_book_users.sh bash script to transform the BX-Users.csv file 
into a format the Mahout recommender can use. Note that the BX-Users.csv file 
should be in the folder you are currently working on:
$ ./clean_book_users.sh



Chapter 7

201

3. Place both the cleaned_book_ratings.txt and the cleaned_book_users.
txt files into HDFS:
$ hadoop fs –mkdir /user/hadoop/books

$ hadoop fs –put cleaned_book_ratings.txt /user/hadoop/books

$ hadoop fs –put cleaned_book_users.txt /user/hadoop/books

4. Run the Mahout recommender using the ratings and user information we just put 
into HDFS. Mahout will launch multiple MapReduce jobs to generate the book 
recommendations:
$ mahout recommenditembased --input /user/hadoop/books/ cleaned_
book_ratings.txt --output /user/hadoop/books/recommended 
--usersFile /user/hadoop/books/cleaned_book_users.txt -s 
SIMILARITY_LOGLIKELIHOOD

5. Examine the results, which are in the format of USERID [RECOMMENDED BOOK 
ISBN:SCORE,...]. The output should look similar to the following:
$ hadoop fs -cat /user/hadoop/books/recommended/part* | head -n1

17      [849911788:4.497727,807503193:4.497536,881030392:4.497536,
761528547:4.497536,380724723:4.497536,807533424:4.497536,310203414
:4.497536,590344153:4.497536,761536744:4.497536,531000265:4.497536
]

6. Examine the results in a more human-friendly way using print_user_summaries.
py. To print the recommendations for the first 10 users, use 10 for the last argument 
to print_user_summaries.py:

hadoop fs -cat /user/hadoop/books/recommended/part-r-00000 | ./
print_user_summaries.py BX-Books.csv BX-Users.csv BX-Book-Ratings.
csv 10

==========

user id =  114073

rated:

Digital Fortress : A Thriller  with:  9

Angels &amp Demons with:  10

recommended:

Morality for Beautiful Girls (No.1 Ladies Detective Agency)

Q Is for Quarry

The Last Juror

The Da Vinci Code

Deception Point
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A Walk in the Woods: Rediscovering America on the Appalachian 
Trail (Official Guides to the Appalachian Trail)

Tears of the Giraffe (No.1 Ladies Detective Agency)

The No. 1 Ladies' Detective Agency (Today Show Book Club #8)

The output from print_user_summaries.py shows which books the user rated, and  
then it shows the recommendations generated by Mahout.

How it works...
The first steps of this recipe required us to clean up the Book-Crossing dataset. The BX-
Book-Ratings.csv file was in a semicolon-delimited format with the following columns:

 f USER_ID: The user ID assigned to a person

 f ISBN: The book's ISBN the person reviewed

 f BOOK-RATING: The rating a person gave to the book

The Mahout recommendation engine expects the input dataset to be in the following  
comma-separated format:

 f USER_ID: The USER_ID must be an integer

 f ITEM_ID: The ITEM_ID must be an integer

 f RATING: The RATING must be an integer that increases in order of preference. For 
example, 1 would mean that the user disliked a book intensely, 10 would mean the 
user enjoyed the book.

Once the transformation was completed on the BX-Book-Ratings.csv file, we performed  
a similar transformation on the BX-Users.csv file. We stripped away most of the information 
in the BX-Users.csv file, except for USER_ID.

Finally, we launch the Mahout recommendation engine. Mahout will launch a series 
of MapReduce jobs to determine the book recommendations for a given set of users, 
specified with the –usersFile flag. In this example, we wanted Mahout to generate 
book recommendations for all of the users in the dataset, so we provided the complete 
USER_ID list to Mahout. In addition to providing an input path, output path, and user list as 
command-line arguments to Mahout, we also specified a fourth parameter -s SIMILARITY_
LOGLIKELIHOOD. The -s flag is used to specify which similarity measure we want Mahout 
to use, to compare similar book preferences across all users. This recipe used log likelihood 
because it is a simple and effective algorithm, but Mahout supports many more similarity 
functions. To see for yourself, run the following command, and examine the options for  
the -s flag:

$mahout recommenditembased
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See also
 f Clustering with Apache Mahout

 f Sentiment classification with Apache Mahout

Clustering with Apache Mahout
Clustering is a technique that can be used to divide a dataset into related partitions. In this 
recipe, we are going to use a specific cluster method called k-means. K-means clustering 
attempts to divide a dataset into k clusters by minimizing the distance between points  
located around a central point in a cluster.

In this recipe, we will use the Apache Mahout k-means implementation to cluster the words 
found in Shakespeare's tragedies.

Getting ready
You will need to download, compile, and install the following:

 f Maven 2.2 or above from http://maven.apache.org

 f Apache Mahout 0.6 from http://mahout.apache.org/

 f Shakespeare.zip file from http://packtpub.com/support

Extract the contents of shakespeare.zip into a folder named shakespeare_text. 
The shakespeare.zip archive should contain six works by Shakespeare. Put the 
shakespeare_text folder and its contents, into HDFS.

$ mkdir shakespeare_text

$ cd shakespeare_text

$ unzip shakespeare.zip

$ cd ..

$ hadoop fs –put shakespeare_text /user/hadoop

How to do it...
Carry out the following steps to perform clustering in Mahout:

1. Convert the Shakespeare text documents into the Hadoop SequenceFile format:
mahout seqdirectory --input /user/hadoop/shakespeare_text --output 
/user/hadoop/shakespeare-seqdir --charset utf-8
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2. Convert the text contents of the SequenceFiles into a vector:
mahout seq2sparse --input /user/hadoop/shakespeare-seqdir 
--output /user/hadoop/shakespeare-sparse --namedVector -ml 80 
-ng 2 -x 70 -md 1 -s 5 -wt tfidf -a org.apache.lucene.analysis.
WhitespaceAnalyzer

3. Run the k-means clustering algorithm on the document vectors. This command will 
launch up to ten MapReduce jobs. Also, since we are using k-means clustering, we 
need to specify the number of clusters we want:
mahout kmeans --input /user/hadoop/shakespeare-sparse/tfidf-
vectors --output /user/hadoop/shakespeare-kmeans/clusters 
--clusters /user/hadoop/shakespeare-kmeans/initialclusters 
--maxIter 10 --numClusters 6 --clustering –overwrite

4. To check the clusters identified by Mahout, use the following command:

mahout clusterdump --seqFileDir /user/hadoop/shakespeare-kmeans/
clusters/clusters-1-final --numWords 5 --dictionary /user/hadoop/
shakespeare-sparse/dictionary.file-0 --dictionaryType sequencefile

The results of the clusterdump tool can be overwhelming. Look for the Top Terms: section 
of the output. For example, following are the top terms for the Romeo and Juliet cluster 
identified by the k-means algorithm:

r=/romeoandjuliet.txt =]}

        Top Terms:

                ROMEO                        =>   29.15485382080078

                JULIET                       =>   25.78818130493164

                CAPULET                      =>  21.401729583740234

                the                          =>  20.942245483398438

                Nurse                        =>  20.129182815551758

How it works...
The initial steps required us to do some pre-processing on the raw text data prior to running 
the k-means algorithm with Mahout. The seqdirectory tool, simply converts the contents 
of a HDFS folder into SequenceFiles. Next, the seq2sparse tool converts the newly 
created SequenceFiles (which still contain text), into document vectors. The arguments to 
seq2sparse are described in the following list:

 f --input: A folder in HDFS containing SequenceFiles formatted for Mahout.

 f --output: The output HDFS folder where the document vectors will be stored.

 f --namedVector: A flag to use the named vectors.
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 f -ml: A minimum log likelihood threshold. We set this to a high number because  
we only want to keep the most significant terms.

 f -ng: The n-gram size.

 f -x: A threshold that defines the maximum document frequency a term can appear 
before it is discarded. In this recipe we chose 70, meaning that any term that appears 
in greater than 70 percent of the documents will be discarded. Use this setting to 
discard meaningless words (For example, words such as at, a, and the).

 f -md: The minimum number of documents a term should occur in before it will be 
considered for processing. In this recipe, we used 1, which means that a term only 
needs to appear in one document to be processed.

 f -s: The minimum times a term needs to appear in a document before it will be 
considered for processing.

 f -wt: The weighting algorithm that should be used. Here we chose to use TF-IDF. 
The other option is TF, which would not help us identify key n-grams.

 f -a: The type of analyzer that should be used. An analyzer is used to transform a text 
document. The WhitespaceAnalyzer splits a document on whitespace into tokens. 
The tokens will be kept, combined, or discarded based on the other flags provided to 
the seq2sparse application.

Finally, we ran the k-means clustering algorithm on the Shakespeare dataset. Mahout will 
launch a series of MapReduce jobs, which are configurable. The k-means job will complete 
when either the k-means clusters converge, or the maximum allowed number of MapReduce 
jobs has been reached. The following are definitions of the parameters we used to configure 
the k-means Mahout job:

 f --input: The folder in HDFS containing the document vectors.

 f --output: The output folder in HDFS of the k-means job.

 f --maxIter: The maximum number of MapReduce jobs to launch.

 f --numClusters: The number of clusters we want to identify. We chose 6, because 
there were six Shakespeare documents, and we wanted to identify significant bi-
grams around those documents.

 f --clusters: The initial setup cluster points.

 f --clustering: A flag that tells Mahout to iterate over the data before clustering.

 f --overwrite: A flag that tells Mahout to overwrite the output folder.

See also
 f Sentiment classification with Apache Mahout
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Sentiment classification with Apache 
Mahout

Sentiment classification is a classification process that tries to determine a person's 
propensity to like or dislike certain items. In this recipe, we will use a naive Bayes classifier 
from Apache Mahout to determine if a set of terms found in a movie review mean the movie 
had a negative or positive reception.

Getting ready
You will need to download, compile, and install the following:

 f Maven 2.2 or above from http://maven.apache.org

 f Apache Mahout 0.6 from http://mahout.apache.org/

 f Polarity_dataset_v2.0 from http://www.cs.cornell.edu/people/
pabo/movie-review-data/

 f Scripts of this chapter from http://packtpub.com/support

Extract the movie review dataset review_polarity.tar.gz to the folder you are currently 
working on. You should see a newly created folder named txt_sentoken. Within that folder 
there should be two more folders named pos and neg. The pos and neg folders hold text 
files containing the written reviews of movies. Obviously, the pos folder contains positive 
movie reviews, and the neg folder contains negative reviews.

How to do it...
1. Run the reorg_data.py script from the folder you are currently working on to 

transform the data into training and test sets for the Mahout classifier:
$ ./reorg_data.py txt_sentoken train test

2. Prepare the dataset for the Mahout classifier:

This application will read and write to the local filesystem, and not HDFS.

$ mahout prepare20newsgroups -p train -o train_formated -a org.
apache.mahout.vectorizer.DefaultAnalyzer -c UTF-8

$ mahout prepare20newsgroups -p test -o  test_formated -a org.
apache.mahout.vectorizer.DefaultAnalyzer -c UTF-8

3. Place the train_formated and test_formated folders into HDFS:
$ hadoop fs –put train_formated /user/hadoop/

$ hadoop fs –put test_formated /user/hadoop/
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4. Train the naive Bayes classifier using the train_formated dataset:
$ mahout trainclassifier -i /user/hadoop/train_formated -o /user/
hadoop/reviews/naive-bayes-model -type bayes -ng 2 -source hdfs

5. Test the classifier using the test_formated dataset:
$ mahout testclassifier -m /user/hadoop/reviews/naive-bayes-model 
-d prepared-test -type bayes -ng 2 -source hdfs -method sequential

6. The testclassifier tool should return a similar summary and confusion matrix. 
The numbers will not be exactly the same as the ones shown in the following:

Summary

-------------------------------------------------------

Correctly Classified Instances       :     285         71.25%

Incorrectly Classified Instances     :     115         28.75%

Total Classified Instances           :     400

=======================================================

Confusion Matrix

-------------------------------------------------------

a       b       <--Classified as

97      103      |  200         a     = pos

12      188      |  200         b     = neg

How it works...
The first two steps required us to prepare the data for the Mahout naive Bayes classifier. 
The reorg_data.py script distributed the positive and negative reviews from the txt_
sentoken folder into a training and test set. 80 percent of the reviews were placed into 
the training set, and the remaining 20 percent were used as a test set. Next, we used 
the prepare20newsgroups tool to format the training and test datasets into a format 
compatible with the Mahout classifier. The example dataset included in Mahout has a 
similar format to the data produced by the reorg_data.py script, thus we can use the 
prepare20newsgroups tool. All that the prepare20newsgroups does is to combine all  
of the files in the pos and neg folders into a single file based on the dataset class (negative  
or positive). So, instead of having 1000 positive and negative files, where each file contained 
a single review, we now have two files named pos.txt and neg.txt, where each contains 
all of the positive and negative reviews.

Next, we trained a naive Bayes classifier using the n-gram size of 2, specified with the –ng 
flag, using the train_formated dataset in HDFS. Mahout trains the classifier by launching  
a series of MapReduce jobs.
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Finally, we ran the testclassifier tool to test the classifier we created in step 4, against 
the test_formated data in HDFS. As we can see from step 6, we correctly classified 71.25 
percent of the test data. It is important to note that this statistic does not mean the classifier 
will be accurate 71.25 percent of the time for every movie review ever. There are a number of 
ways in which classifiers can be trained and validated. Those techniques go beyond the scope 
of this book.

There's more...
The testclassifier tool we used in step 6, did not run a MapReduce job. It tested the 
classifier in local mode. If we wanted to test the classifier using MapReduce, we just need to 
change the -method parameter to mapreduce.

$ mahout testclassifier -m /user/hadoop/reviews/naive-bayes-model -d 
prepared-test -type bayes -ng 2 -source hdfs -method mapreduce
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Debugging

In this chapter, we will cover:

 f Using Counters in a MapReduce job to track bad records

 f Developing and testing MapReduce jobs with MRUnit

 f Developing and testing MapReduce jobs running in local mode

 f Enabling MapReduce jobs to skip bad records

 f Using Counters in a streaming job

 f Updating task status messages to display debugging information

 f Using illustrate to debug Pig jobs

Introduction
There is an adage among those working with Hadoop that everything breaks at scale. 
Malformed or unexpected input is common. It's an unfortunate downside of working with large 
amounts of unstructured data. Within the context of Hadoop, individual tasks are isolated and 
given different sets of input. This allows Hadoop to easily distribute jobs, but leads to difficulty 
in tracking global events and understanding the state of each individual task. Fortunately, 
there are several tools and techniques available to aid in the process of debugging Hadoop 
jobs. This chapter will focus on applying these tools and techniques to debug MapReduce jobs.
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Using Counters in a MapReduce job to  
track bad records

The MapReduce framework provides Counters as an efficient mechanism for tracking the 
occurrences of global events within the map and reduce phases of jobs. For example, a  
typical MapReduce job will kick off several mapper instances, one for each block of the 
input data, all running the same code. These instances are part of the same job, but run 
independent of one another. Counters allow a developer to track aggregated events from all  
of those separate instances.

A more concrete use of Counters can be found in the MapReduce framework itself. Each 
MapReduce job defines several standard Counters. The output of these Counters can be 
found in the job details of the Job Tracker web UI.

The UI shows the Counter group, name, mapper totals, reducer totals, and job totals.

Counters should be limited to tracking metadata about the job. The standard Counters are 
good examples of this. The Map input records counter provides useful information about a 
particular execution of a job. If Counters did not exist, these kinds of statistics would have to 
be part of the job's main output, where they don't belong; or more likely as part of a secondary 
output, complicating the logic of the job.

The following recipe is a simple map-only job that filters out bad records and uses a counter  
to log the number of records that were filtered.

Getting ready
You will need to download the weblog_entries_bad_records.txt dataset from the 
Packt website, http://www.packtpub.com/support.
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How to do it...
1. Copy the weblog_entries_bad_records.txt file from the local file system into 

the new folder created in HDFS:
hadoop fs –copyFromLocal weblog_entries.txt /data/weblogs

2. Submit the CountersExample job:
hadoop jar ./CountersExample.jar com.packt.hadoop.solutions.
CounterExample /data/weblogs/weblog_entries_bad_records.txt /data/
weblogs/weblog_entries_clean.txt  

3. To view the counter in the Job Tracker UI, open a web browser and navigate to the Job 
Tracker UI. The default address is localhost:50030. Scroll down to the Completed 
Jobs section. Then locate the CounterExample job. The most recent jobs are at the 
bottom of the table. Once the job has been located, click on Jobid. This page has 
high-level statistics about the job, including the Counters.

How it works...
Counters are defined in groups. In Java, each Counter group is an Enum. In the 
CounterExample job, an Enum for tracking the count of each type of bad record was defined:

static enum BadRecords{INVALID_NUMBER_OF_COLUMNS, INVALID_IP_ADDRESS};

In the map function, there are two checks for valid data. The first check splits the data 
delimited by tabs. For this example, if properly formed, each record should have five columns. 
If a record does not have five columns, a call is made to the Context class to get the counter 
for BadRecords.INVALID_NUMBER_OF_COLUMNS. The counter is then incremented by 1.

String record = value.toString();
String [] columns = record.split("\t");

// Check for valid number of columns
if (columns.length != 5) {
context.getCounter(BadRecords.INVALID_NUMBER_OF_COLUMNS).increment(1);
return;
}
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The second check is for validating IP addresses. A regular expression, VALID_IP_ADDRESS, 
is defined. As its name implies, this regular expression will match valid IP addresses.

private static final String VALID_IP_ADDRESS = "^([01]?\\d\\d?|2[0-
4]\\d|25[0-5])\\.([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\." +
           "([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\.([01]?\\d\\d?|2[0-4]\\
d|25[0-5])$";

The VALID_IP_ADDRESS regular expression is used to check every record's IP address 
column for a match. For each record that does not match, the INVALID_IP_ADDRESS 
counter is incremented.

// Check for valid IP addresses
Matcher matcher = pattern.matcher(columns[4]);
If (!matcher.matches()) {
   context.getCounter(BadRecords.INVALID_IP_ADDRESS).increment(1);
   return;
}

Each increment of a counter is first stored locally by each mapper. The counter values are 
then sent to the Task Tracker for a second level of aggregation. Finally, the values are sent  
to the Job Tracker where the global aggregation takes place.

Developing and testing MapReduce jobs  
with MRUnit

Conceptually, MapReduce jobs are relatively simple. In the map phase, each input record has 
a function applied to it, resulting in one or more key-value pairs. The reduce phase receives 
a group of the key-value pairs and performs some function over that group. Testing mappers 
and reducers should be as easy as testing any other function. A given input will result in an 
expected output. The complexities arise due to the distributed nature of Hadoop. Hadoop is 
a large framework with many moving parts. Prior to the release of MRUnit by Cloudera, even 
the simplest tests running in local mode would have to read from the disk and take several 
seconds each to set up and run.

MRUnit removes as much of the Hadoop framework as possible while developing and testing. 
The focus is narrowed to the map and reduce code, their inputs, and expected outputs. With 
MRUnit, developing and testing MapReduce code can be done entirely in the IDE, and these 
tests take fractions of a second to run.

This recipe will demonstrate how MRUnit uses the IdentityMapper provided by the MapReduce 
framework in the lib folder. The IdentityMapper takes a key-value pair as input and emits the 
same key-value pair, unchanged.
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Getting ready
Start with the following steps:

 f Download the latest version of MRUnit from http://mrunit.apache.org/
general/downloads.html

 f Create a new Java project

 f Add the mrunit-X.Y.Z-incubating-hadoop1.jar file and other Hadoop JAR 
files to the build path of the Java project

 f Create a new class named IdentityMapperTest

 f For the full source, review the IdentityMapperTest.java file in the source code 
folder of this chapter

How to do it...
Follow these steps to test a mapper with MRUnit:

1. Have the IdentityMapperTest class extend the TestCase class:
public class IdentityMapperTest extends TestCase

2. Create two private members of mapper and driver:
private Mapper identityMapper;
private MapDriver mapDriver;

3. Add a setup() method with a Before annotation:
@Before
public void setup() {
   identityMapper = new IdentityMapper();
mapDriver = new MapDriver(identityMapper);
}

4. Add a testIdentityMapper1() method with a Test annotation:
@Test
public void testIdentityMapper1() {
   mapDriver.withInput(new Text("key"), new Text("value"))
   mapDriver.withOutput(new Text("key"), new Text("value"))
         .runTest();
}

http://mrunit.apache.org/general/downloads.html
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5. Run the application.

6. Add a testIdentityMapper2() method that would fail:
@Test
public void testIdentityMapper2() {
   mapDriver.withInput(new Text("key"), new Text("value"))
   mapDriver.withOutput(new Text("key2"), new Text("value2"))
   mapDriver.runTest();
}

7. Run the application again.

How it works...
MRUnit is built on top of the popular JUnit testing framework. It uses the object-mocking 
library, Mockito, to mock most of the essential Hadoop objects so the user only needs to  
focus on the map and reduce logic. The MapDriver class runs the test. It is instantiated  
with a Mapper class. The withInput() method is called to provide input to the Mapper 
class that the MapDriver class was instantiated with. The withOutput() method is  
called to provide output to validate the results of the call to the Mapper class. The call to  
the runTest() method actually calls the mapper, passing it the inputs and validating its 
outputs against the ones provided by the withOutput() method.
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There's more...
This example only showed the testing of a mapper. MRUnit also provides a ReduceDriver 
class that can be used in the same way as MapDriver for testing reducers.

See also
 f For more information on Mockito, visit http://code.google.com/p/mockito/

 f The Developing and testing MapReduce jobs running in local mode recipe of  
this chapter

Developing and testing MapReduce jobs 
running in local mode

Developing in MRUnit and local mode are complementary. MRUnit provides an elegant way 
to test the map and reduce phases of a MapReduce job. Initial development and testing of 
jobs should be done using this framework. However, there are several key components of a 
MapReduce job that are not exercised when running MRUnit tests. Two key class types are 
InputFormats and OutFormats. Running jobs in local mode will test a larger portion of  
a job. When testing in local mode, it is also much easier to use a significant amount of  
real-world data.

This recipe will show an example of configuring Hadoop to use local mode and then debugging 
that job using the Eclipse debugger.

Getting ready
You will need to download the weblog_entries_bad_records.txt dataset from 
the Packt website, http://www.packtpub.com/support. This example will use the 
CounterExample.java class provided with the Using Counters in a MapReduce job to  
track bad records recipe.

How to do it...
1. Open the $HADOOP_HOME/conf/mapred-site.xml file in a text editor.

2. Set the mapred.job.tracker property value to local:
<property>
      <name>mapred.job.tracker</name>
      <value>local</value>
   </property>
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3. Open the $HADOOP_HOME/conf/core-site.xml file in a text editor.

4. Set the fs.default.name property value to file:///:
<property>
   <name>fs.default.name</name>
   <value>file:///</value>
</property>

5. Open the $HADOOP_HOME/conf/hadoop-env.sh file and add the following line:
export HADOOP_OPTS="-agentlib:jdwp=transport=dt_socket,server=y, 
suspend=y,address=7272"

6. Run the CountersExample.jar file by passing the local path to the weblog_
entries_bad_records.txt file, and give a local path to an output file:
$HADOOP_HOME/bin/hadoop jar ./CountersExample.jar com.packt.
hadoop.solutions.CounterExample /local/path/to/weblog_entries_bad_
records.txt /local/path/to/weblog_entries_clean.txt

You'll get the following output:

Listening for transport dt_socket at address: 7272

7. Open the Counters project in Eclipse, and set up a new remote debug configuration.

8. Create a new breakpoint and debug.
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How it works...
A MapReduce job that is configured to execute in local mode runs entirely in one JVM instance. 
Unlike the pseudo-distributed mode, this mode makes it possible to hook up a remote debugger 
to debug a job. The mapred.job.tracker property set to local informs the Hadoop 
framework that jobs will now run in the local mode. The LocalJobRunner class, which is used 
when running in local mode, is responsible for implementing the MapReduce framework locally 
in a single process. This has the benefit of keeping jobs that run in local mode as close as 
possible to the jobs that run distributed on a cluster. One downside to using LocalJobRunner 
is that it carries the baggage of setting up an instance of Hadoop. This means even the smallest 
jobs will require at least several seconds to run. Setting the fs.default.name property value 
to file:/// configures the job to look for input and output files on the local filesystem. Adding 
export HADOOP_OPTS="-agentlib:jdwp=transport=dt_socket,server=y,suspe
nd=y,address=7272" to the hadoop-env.sh file configures the JVM to suspend processing 
and listen for a remote debugger on port 7272 on start up.

There's more...
Apache Pig also provides a local mode for development and testing. It uses the same 
LocalJobRunner class as a local mode MapReduce job. It can be accessed by starting  
Pig with the following command:

pig –x local

See also
 f Developing and testing MapReduce jobs with MRUnit

Enabling MapReduce jobs to skip bad 
records

When working with the amounts of data that Hadoop was designed to process, it is only a 
matter of time before even the most robust job runs into unexpected or malformed data. If not 
handled properly, bad data can easily cause a job to fail. By default, Hadoop will not skip bad 
data. For some applications, it may be acceptable to skip a small percentage of the input data. 
Hadoop provides a way to do just that. Even if skipping data is not acceptable for a given use 
case, Hadoop's skipping mechanism can be used to pinpoint the bad data and log it for review.
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How to do it...
1. To enable the skipping of 100 bad records in a map job, add the following to the 

run() method where the job configuration is set up:
SkipBadRecords.setMapperMaxSkipRecords(conf, 100);

2. To enable the skipping of 100 bad record groups in a reduce job, add the following  
to the run() method where the job configuration is set up:

SkipBadRecords.setReducerMaxSkipGroups(conf, 100);

How it works...
The process to skip bad records will trigger if skipping has been enabled. Skipping is  
enabled by calling the static methods on the SkipBadRecords class and once a task has 
failed twice. Hadoop will then perform a binary search through the input data to identify the 
bad records. Keep in mind that this is an expensive task that could require multiple attempts. 
A job that enables skipping will probably want to increase the number of map and reduce 
attempts. This can be done by using the JobConf.setMaxMapAttempts() and JobConf.
setMaxReduceAttempts() methods.

There's more...
By default, the process to skip bad records will be triggered after two failed attempts.  
This default can be changed using the setAttemptsToStartSkipping() method on the 
SkipBadRecords class. The output folder of the skipped records can be controlled using 
the setSkipOutputPath() method on the SkipBadRecords class. By default, skipped 
records will be logged to the _log/skip/ folder. These files are formatted as Hadoop 
sequence files. To get them into human-readable format, use the following command:

hadoop fs –text _log/skip/<filename>

Record-skipping can also be controlled using MapReduce job properties. The following table 
is a relevant snippet from the table provided at http://hadoop.apache.org/common/
docs/r0.20.2/mapred-default.html.

http://hadoop.apache.org/common/docs/r0.20.2/mapred-default.html
http://hadoop.apache.org/common/docs/r0.20.2/mapred-default.html
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Property Default 
Value

Description

mapred.skip.
attempts.to.start.
skipping

2 The number of Task attempts after which skip 
mode will be kicked off. When skip mode is kicked 
off, the task reports the range of records that it 
will process next to the TaskTracker. This is so that, 
on failures, the TaskTracker knows which ones are 
possibly the bad records. On further executions, 
those are skipped.

mapred.skip.map.
auto.incr.proc.count

true On setting this flag to true, the MapRunner 
increments the SkipBadRecords.COUNTER_
MAP_PROCESSED_RECORDS counter after 
invoking the map function. This value must be set 
to false for applications that process the records 
asynchronously or buffer the input records. For 
example, streaming. In such cases, applications 
should increment this counter on their own.

mapred.skip.reduce.
auto.incr.proc.count

true On setting this flag to true, the framework 
increments the SkipBadRecords.COUNTER_
REDUCE_PROCESSED_GROUPS counter after 
invoking the reduce function. This value must be 
set to false for applications that process the 
records asynchronously or buffer the input records. 
For example, streaming. In such cases, applications 
should increment this counter on their own.

mapred.skip.out.dir If no value is specified here, the skipped records 
are written to the output folder at _logs/skip. 
User can stop writing skipped records by giving the 
value none.

mapred.skip.map.max.
skip.records

0 This is the number of acceptable skip records 
surrounding the bad record per bad record in the 
mapper. The number includes the bad record as 
well. To turn the feature of detection/skipping of 
bad records off, set the value to 0. The framework 
tries to narrow down the skipped range by retrying 
until this threshold is met or all attempts get 
exhausted for this task. Set the value to the 
value of Long.MAX_VALUE to indicate that the 
framework need not try to narrow down. Whatever 
records (depends on the application) get skipped, 
are acceptable.



Debugging

220

Property Default 
Value

Description

mapred.skip.map.max.
skip.records

0 This is the number of acceptable skip groups 
surrounding the bad group per bad group in the 
reducer. The number includes the bad group as 
well. To turn the feature of detection/skipping of 
bad groups off, set the value to 0. The framework 
tries to narrow down the skipped range by retrying 
until this threshold is met or all attempts get 
exhausted for this task. Set the value to the 
value of Long.MAX_VALUE to indicate that the 
framework need not try to narrow down. Whatever 
groups (depends on the application) get skipped, 
are acceptable.

Using Counters in a streaming job
Hadoop is not limited to running MapReduce jobs written in Java or other JVM languages.  
It also provides a generic streaming interface. Using the streaming interface, any application 
that can read and write to stdin and stdout can be used in a MapReduce job. Since 
streaming jobs do not have access to the Hadoop Java classes, different approaches need 
to be taken to get access to the framework's features. One convenient and extremely useful 
feature provided by Hadoop is Counters. This recipe will use a simple Python program to  
show how to increment a counter from a streaming application. The Python code does not 
have direct access to the Java Reporter class used by the Hadoop framework for working 
with Counters. Instead, it will write data to stderr in a format that has special meaning.  
The Hadoop framework will interpret this as a request to increment the specified counter.

Getting ready
You will need to download the weblog_entries_bad_records.txt dataset from 
the Packt website, http://www.packtpub.com/support. This example will use the 
streaming_counters.py Python program provided in the code section of this chapter.
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How to do it...
Complete the following steps to execute a Hadoop streaming job using the streaming_
counters.py program:

1. Run the following command:
hadoop jar $HADOOP_HOME/contrib/hadoop-*streaming*.jar \

-file streaming_counters.py \

-mapper streaming_counters.py \

-reducer NONE \

-input /data/weblogs/weblog_entries_bad_records.txt \

-output /data/weblogs/weblog_entries_filtered.txt

2. To view the counter in the Job Tracker UI, open a web browser and navigate to the Job 
Tracker UI. The default address is localhost:50030. Scroll down to the Completed 
Jobs section. Then locate the streaming_counters job. The most recent jobs are at 
the bottom of the table. Once the job has been located, click on Jobid.

How it works...
The Hadoop framework constantly monitors stderr for entries that fit the following format:

reporter:counter:group,counter,value 

If it finds a string that matches this format, the Hadoop framework will check to see if that 
group and counter exists. If they do exist, the current value will be incremented by that value. 
If they do not exist, the group and counter will be created and set to that value.

The Python code performs two validation checks on the weblog data. The first checks for an 
invalid number of columns:

if len(cols) < 5:
sys.stderr.write("reporter:counter:BadRecords,\
INVALID_NUMBER_OF_COLS,1")
   continue
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If a line has less than five columns, the program will write to stderr in the format that 
Hadoop expects for manipulating the Counter. Similarly, the second validation verifies the IP 
address of each record and increments a counter each time an invalid IP address is found.

m = re.match(('^([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\'
                      '.([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\'
                      '.([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\'
                      '.([01]?\\d\\d?|2[0-4]\\d|25[0-5])$'), ip)
if not m:
sys.stderr.write("reporter:counter:BadRecords,INVALID_IP,1")
continue

There's more...
Streaming jobs also have access to setting the task's status message using the same basic 
method. Writing to stderr in the following format will update a task's status, setting it to 
message.

reporter:status:message

See also
 f Using Counters in a MapReduce job to track bad records

Updating task status messages to display 
debugging information

Along with maintaining counters, another role of the Reporter class in Hadoop is to capture 
task status information. The task status information is periodically sent to the Job Tracker. The 
Job Tracker UI is updated to reflect the current status. By default, the task status will display 
its state. The task state can be one of the following:

 f RUNNING

 f SUCCEEDED

 f FAILED

 f UNASSIGNED

 f KILLED

 f COMMIT_PENDING

 f FAILED_UNCLEAN

 f KILLED_UNCLEAN
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When debugging a MapReduce job, it can be useful to display a custom message that gives 
more detailed information on how the task is running. This recipe shows how to update the 
task status.

Getting ready
 f Download the source code for this chapter.
 f Load the StatusMessage project.

How to do it...
Updating a task's status message can be done using the setStatus() method of the job's 
Context class.

context.setMessage("user custom message");

How it works...
The source code for this chapter provides an example of using a custom task status message 
to display the number of rows being processed per second by the task.

public static class StatusMap extends Mapper<LongWritable, Text, 
LongWritable, Text> {

      private int rowCount = 0;
      private long startTime = 0;

      public void map(LongWritable key, Text value, Context context) 
throws IOException, InterruptedException{

         //Display rows per second every 100,000 rows
         rowCount++;
         if(startTime == 0 || rowCount % 100000 == 0)
         {
            if(startTime > 0)
{
               long estimatedTime = System.nanoTime() - startTime;
               context.setStatus("Processing: " + (double)rowCount / 
((double)estimatedTime/1000000000.0) + " rows/second");
               rowCount = 0;
}

            startTime = System.nanoTime();
}

         context.write(key, value);
}
}
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Two private class variables are declared: rowCount for keeping track of the number of rows 
that are processed and startTime for keeping track of the time when processing started. 
Once the map function has processed 100,000 lines, the task status is updated with the 
number of rows per second that are being processed.

context.setStatus("Processing: " + (double)rowCount / ((double)
estimatedTime/1000000000.0) + " rows/second"); 

After the message has been updated, the rowCount and startTime variables are reset 
and the process starts over again. The status is stored locally in the memory of the current 
process. It is then sent to the Task Tracker. The next time the Task Tracker pings, the Job 
Tracker is also sent the updated status message. Once the Job Tracker receives the status 
message, this information is made available to the UI.

Using illustrate to debug Pig jobs
Generating good test data for a complex distributed job that joins, filters, and aggregates 
gigabytes or even terabytes of data can be one of the hardest parts of the development 
process, or at least one of the most tedious. Apache Pig provides an incredibly powerful tool, 
illustrate, that will seek out cases from the provided full input data that exercise different 
dataflow paths. The following recipe shows an example of the illustrate command in use.

Getting ready
Apache Pig 0.10 or a more recent version must be installed. You can download it from 
http://pig.apache.org/releases.html.

How to do it...
The following Pig code will show an example of a record with a malformed IP address:

weblogs = load '/data/weblogs/weblog_entries_bad_records.txt'

   as (md5:chararray, url:chararray, date:chararray, time:chararray, 
ip:chararray);

ip_addresses = foreach weblogs generate ip;

bad = filter ip_addresses by not

(ip matches '^([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\.([01]?\\d\\d?|2[0-4]\\
d|25[0-5])\\.([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\.([01]?\\d\\d?|2[0-4]\\
d|25[0-5])$');

illustrate bad;

http://pig.apache.org/releases.html
http://pig.apache.org/releases.html
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The output will look like the following:

How it works...
In the preceding example, data is filtered on invalid IP addresses. The number of records that 
have an invalid IP address make up a small percentage of the total. If a traditional sampling 
approach was taken to create test data, chances are that the sampled data would not contain 
any records with an invalid IP address.

The illustrate algorithm makes four complete passes over a Pig script to generate its 
data. The first pass takes a sample of data from each input and sends it through the script. 
The second pass finds and removes records that followed the same path through the script. 
The third pass determines if any possible paths were not taken by the sampled data from the 
first pass. If there are paths that are not represented by the sampled data, the illustrate 
algorithm will create fake data that exercises the remaining paths. The fourth pass is similar 
to the second pass; it removes any redundant data created by the third pass.

See also
 f To learn about generating example data for dataflow programs, visit  

http://i.stanford.edu/~olston/publications/sigmod09.pdf

http://i.stanford.edu/~olston/publications/sigmod09.pdf
http://i.stanford.edu/~olston/publications/sigmod09.pdf
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System Administration

In this chapter we will cover:

 f Starting Hadoop in pseudo-distributed mode

 f Starting Hadoop in distributed mode

 f Adding new nodes to an existing cluster

 f Safely decommissioning nodes

 f Recovering from a NameNode failure

 f Monitoring cluster health using Ganglia

 f Tuning MapReduce job parameters

Introduction
This chapter will discuss how to maintain, monitor, and tune a Hadoop cluster and MapReduce 
jobs. We will review the various Hadoop modes of operations, describe how to resolve problems 
within the Hadoop cluster, and finally review some important job tuning parameters.

Starting Hadoop in pseudo-distributed mode
Hadoop supports three different operating modes:

 f Standalone mode: In this mode, Hadoop will run as a single process on a single node.

 f Pseudo-distributed mode: In this mode, Hadoop will run all services in separate 
processes on a single node.

 f Fully-distributed mode: In this mode, Hadoop will run all services in separate 
processes across multiple nodes.
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This recipe will describe how to install and set up Hadoop to run in pseudo-distributed mode. 
In pseudo-distributed mode, all of the HDFS and MapReduce processes will start on a single 
node. Pseudo-distributed mode is an excellent environment to test your HDFS operations  
and/or your MapReduce applications on a subset of the data.

Getting ready
Ensure that you have Java 1.6, ssh, and sshd installed. In addition, the ssh daemon (sshd) 
should be running on the node. You can validate the installation of these applications by  
using the following commands:

$ java -version

java version "1.6.0_31"

Java(TM) SE Runtime Environment (build 1.6.0_31-b04)

Java HotSpot(TM) 64-Bit Server VM (build 20.6-b01, mixed mode)

$ ssh

usage: ssh [-1246AaCfgkMNnqsTtVvXxY] [-b bind_address] [-c cipher_spec]

           [-D [bind_address:]port] [-e escape_char] [-F configfile]

           [-i identity_file] [-L [bind_address:]port:host:hostport]

           [-l login_name] [-m mac_spec] [-O ctl_cmd] [-o option] [-p 
port]

           [-R [bind_address:]port:host:hostport] [-S ctl_path]

           [-w tunnel:tunnel] [user@]hostname [command]

$ service sshd status

openssh-daemon (pid  2004) is running...

How to do it...
Carry out the following steps to start Hadoop in pseudo-distributed mode:

1. Create a Hadoop user account. This is not specifically required to get Hadoop running 
in pseudo-distributed mode, but it is a common and good security practice. Ensure 
that the JAVA_HOME environment property is set to the folder of the system's Java 
installation:
# useradd hadoop

# passwd hadoop

# su – hadoop

$ echo $JAVA_HOME

$ /usr/java/jdk1.6.0_31
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2. Generate an ssh public and private key pair to allow password-less login to the node 
using the Hadoop user account. When asked for a passphrase, hit the Enter key, 
ensuring no passphrase will be used:
$ su – hadoop

$ ssh-keygen –t rsa

3. Add the public key to the authorized key list:

If you have more than one node, you will need to copy this key to every 
node in the cluster.

$ ssh-copy-id –i /home/hadoop/.ssh/id_rsa.pub hadoop@localhost

4. Test the password-less ssh login. You should be able to ssh to localhost using 
your hadoop account without providing a password:
$ ssh localhost

5. Download a Hadoop distribution from http://hadoop.apache.org using the 
Hadoop user account. We used Hadoop 0.20.x for this installation:
# su – hadoop

$ tar –zxvf hadoop-0.20.x.tar.gz

6. Change the following configuration files located in the conf folder of the extracted 
Hadoop distribution. These configuration changes will allow Hadoop to run in  
pseudo-distributed mode:
$ vi conf/core-site.xml

<configuration>

  <property>

    <name>fs.default.name</name>

    <value>hdfs://localhost:8020</value>

  </property>

</configuration>

$ vi conf/hdfs-site.xml

<configuration>

  <property>

    <name>dfs.replication</name>

    <value>1</value>

  </property>

</configuration>

$ vi conf/mapred-site.xml
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<configuration>

  <property>

    <name>mapred.job.tracker</name>

    <value>localhost:8021</value>

  </property>

</configuration>

7. Format the Hadoop NameNode:
$ bin/hadoop namenode –format

8. Start all of the Hadoop HDFS and MapReduce services:
$ bin/start-all.sh

9. Verify all of the services started successfully by looking at the NameNode  
status page http://localhost:50070/, and the JobTracker page  
http://localhost:50030/. You can stop all of the Hadoop services  
by running the bin/stop-all.sh script.

How it works...
Steps 1 through 4 sets up a single node for a password-less login using ssh.

Next, we downloaded a distribution of Hadoop and configured the distribution to run in 
pseudo-distributed mode. The fs.default.name property was set to a URI to tell Hadoop 
where to find the HDFS implementation, which is running on our local machine and listening 
on port 8020. Next, we set the replication factor of HDFS to 1 using the dfs.replication 
property. Since we are running all of the Hadoop services on a single node, there is no need  
to replicate any information. If we did, all of the replicated information would reside on the  
single node. We set the value of the last configuration property mapred.job.tracker  
to localhost:8021. The mapred.job.tracker property tells Hadoop where to find  
the JobTracker.

Finally, we formatted the NameNode and started the Hadoop services. You need to format  
the NameNode after you set up a new Hadoop cluster. Formatting a NameNode will erase  
all of the data in the cluster.

There's more...
By default, the Hadoop distribution comes configured to run in standalone mode. In 
standalone mode, there is no need to start any Hadoop service. In addition, input and  
output folders will be located on the local filesystem, instead of HDFS. To run a MapReduce 
job in standalone mode, use the configuration files that initially came with the distribution. 
Create an input folder on the local filesystem and use the Hadoop shell script:
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$ mkdir input

$ cp somefiles*.txt input/

$ /path/to/hadoop/bin/hadoop jar myjar.jar input/*.txt output

See also
 f Starting Hadoop in distributed mode

Starting Hadoop in distributed mode
As mentioned in the previous recipe, Hadoop supports three different operating modes:

 f Standalone mode

 f Pseudo-distributed mode

 f Fully-distributed mode

This recipe will describe how to set up Hadoop to run in fully-distributed mode. In fully-
distributed mode, HDFS and the MapReduce services will run across multiple machines. 
A typical architecture is to have a dedicated node run the NameNode and the JobTracker 
services, another dedicated node to host the Secondary NameNode service, and the 
remaining nodes in the cluster running both the DataNode and TaskTracker services.

Getting ready
This recipe will assume that steps 1 through 5 from the recipe Starting Hadoop in  
pseudo-distributed mode of this chapter have been completed. There should be a user  
named hadoop on every node in the cluster. In addition, the rsa public key generated in  
step 2 of the previous recipe must be distributed and installed on every node in the cluster 
using the ssh-copy-id command. Finally, the Hadoop distribution should be extracted  
and deployed on every node in the cluster.

We will now discuss the specific configurations required to get the cluster running in 
distributed mode. We will assume that your cluster will use the following configuration:

Server name Purpose Number of dedicated 
machines

head Will run the NameNode and JobTracker 
services

1

secondary Will run the Secondary NameNode service 1
worker(n) Will run the TaskTracker and DataNode 

services
3 or greater
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How to do it...
Perform the following steps to start Hadoop in fully-distributed mode:

1. Update the following configuration files on all of the nodes in the cluster:
$ vi conf/core-site.xml

<configuration>

  <property>

    <name>fs.default.name</name>

    <value>hdfs://head:8020</value>

  </property>

</configuration>

$ vi conf/hdfs-site.xml

<configuration>

  <property>

    <name>dfs.replication</name>

    <value>3</value>

  </property>

</configuration>

$ vi conf/mapred-site.xml

<configuration>

  <property>

    <name>mapred.job.tracker</name>

    <value>head:8021</value>

  </property>

</configuration>

2. Update the masters and slaves configuration files on the head node. The 
masters configuration file contains the hostname of the node which will run the 
Secondary NameNode. The slaves configuration file contains a list of the hosts 
which will run the TaskTracker and DataNode services:
$ vi conf/masters

secondary

$ vi conf/slaves

worker1

worker2

worker3
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3. Format the Hadoop NameNode from the head node:
$ bin/hadoop namenode –format

4. From the head node as the hadoop user, start all of the Hadoop services:
$ bin/start-all.sh

5. Confirm that all of the correct services are running on the proper nodes:

 � On the master: Both the NameNode and JobTracker services should running

 � On the secondary: The Secondary NameNode service should be running

 � On the worker nodes: The DataNode and TaskTracker services should  
be running

How it works...
First we changed the Hadoop configuration files core-site.xml, hdfs-site.xml,  
and mapred-site.xml on every node in the cluster. These configuration files need to be 
updated to tell the Hadoop services running on every node where to find the NameNode and 
JobTracker services. In addition, we changed the HDFS replication factor to 3. Since we have 
three or more nodes available, we changed the replication from 1 to 3 in order to support  
high data availability in case one of the worker nodes experiences a failure.

There's more...
It is not necessary to run the Secondary NameNode on a separate node. You can run the 
Secondary NameNode on the same node as the NameNode and JobTracker, if you wish.  
To do this, stop the cluster, modify the masters configuration file on the master node,  
and restart all of the services:

$ bin/stop-all.sh

$ vi masters

head

$ bin/start-all.sh

Another set of configuration parameters that will come in handy when your cluster grows or 
when you wish to perform maintenance, are the exclusion list parameters that can be added 
to the mapred-site.xml configuration file. By adding the following lines to mapred-site.
xml, you can list the nodes that will be barred from connecting to the NameNode (dfs.
hosts.exclude) and/or the JobTracker (mapred.hosts.exclude). These configuration 
parameters will be used later when we discuss decommissioning of a node in the cluster:

<property>
    <name>dfs.hosts.exclude</name>
    <value>/path/to/hadoop/dfs_excludes</value>
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    <final>true</final>
  </property>
  <property>
    <name>mapred.hosts.exclude</name>
    <value>/path/to/hadoop/mapred_excludes </value>
    <final>true</final>
  </property>

Create two empty files named dfs_excludes, and mapred_excludes for future use:

$ touch /path/to/hadoop/dfs_excludes

$ touch /path/to/hadoop/mapred_excludes

Start the cluster:

$ bin/start-all.sh

See also
 f Adding new nodes to an existing cluster

 f Safely decommissioning nodes

Adding new nodes to an existing cluster
Hadoop supports adding new nodes to an existing cluster without shutting down or  
restarting any service. This recipe will outline the steps required to add a new node  
to a pre-existing cluster.

Getting ready
Ensure that you have a Hadoop cluster up and running. In addition, ensure that you have  
the Hadoop distribution extracted, and the configuration files have been updated with the 
settings from the recipe titled Starting Hadoop in distributed mode.

We will use the following terms for our imaginary cluster:

Server name Purpose Number of dedicated 
machines

head Will run the NameNode and JobTracker 
services

1

secondary Will run the Secondary NameNode service 1
worker(n) Will run the TraskTracker and DataNode 

services
3 or greater
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How to do it...
Follow these steps to add new nodes to an existing cluster:

1. From the head node, update the slaves configuration file with the hostname  
of the new node:
$ vi conf/slaves

worker1

worker2

worker3

worker4

2. Log in to the new node and start the DataNode and TaskTracker services:

$ ssh hadoop@worker4

$ cd /path/to/hadoop

$ bin/hadoop-daemon.sh start datanode

$ bin/hadoop-daemon.sh start tasktracker

How it works...
We updated the slaves configuration file on the head node to tell the Hadoop framework 
that a new node exists in the cluster. However, this file is only read when the Hadoop services 
are started (for example, by executing the bin/start-all.sh script). In order to add the 
new node to the cluster without having to restart all of the Hadoop services, we logged into  
the new node, and started the DataNode and TaskTracker services manually.

The DataNode and TaskTracker services will automatically start the next 
time the cluster is restarted.

There's more...
When you add a new node to the cluster, the cluster is not properly balanced. HDFS will not 
automatically redistribute any existing data to the new node in order to balance the cluster.  
To rebalance the existing data in the cluster, you can run the following command from the 
head node:

# bin/start-balancer.sh
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Rebalancing a Hadoop cluster is a network-intensive task. Imagine, we 
might be moving terabytes of data around, depending on the number of 
nodes added to the cluster. Job performance issues might arise when a 
cluster is in the process of rebalancing, and therefore regular rebalancing 
maintenance should be properly planned.

See also
 f Safely decommissioning nodes

Safely decommissioning nodes
The practice of removing nodes from a Hadoop cluster is very common. Hardware might  
have failed, or machines might need to be upgraded. In this recipe, we will show you the  
steps to safely remove a worker node from a Hadoop cluster.

Getting ready
It is assumed that your cluster is up and running and you have configured the following 
properties in mapred-site.xml:

<property>
    <name>dfs.hosts.exclude</name>
    <value>/path/to/hadoop/dfs_excludes</value>
    <final>true</final>
  </property>
  <property>
    <name>mapred.hosts.exclude</name>
    <value>/path/to/hadoop/mapred_excludes </value>
    <final>true</final>
</property>

In addition, there should be two files located in the Hadoop home folder on the head node: 
dfs_excludes and mapred_excludes.

How to do it...
Perform the following steps to decommission a node in the Hadoop cluster:

1. Add the hostname of the node you wish to decommission to the dfs_excludes  
and mapred_excludes files on the head node:
$ vi /path/to/hadoop/dfs_excludes
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worker1

$ vi /path/to/hadoop/mapred_excludes

worker1

2. Notify the NameNode to re-read the exclude list and disconnect the worker node 
which will be decommissioned:
$ hadoop dfsadmin –refreshNodes

3. Notify the JobTracker to re-read the exclude list and disconnect the worker node 
which will be decommissioned:
$ hadoop mradmin –refreshNodes

4. Check the status of the decommissioning process:

$ hadoop dfsadmin -report

How it works...
First, we added the hostname of the node we wanted to decommission to the dfs_excludes 
and mapred_excludes files we created in a previous recipe. Next, we issued the hadoop 
dfsadmin –refreshNodes command to notify the NameNode to disconnect from all of 
the hosts listed in the dfs_excludes file. Similarly, we issued the hadoop mradmin –
refreshNodes command to notify the JobTracker to stop using the TaskTrackers on the 
nodes listed in the mapred_excludes file.

Recovering from a NameNode failure
The NameNode is the single most important Hadoop service. It maintains the locations 
of all of the data blocks in the cluster; in addition, it maintains the state of the distributed 
filesystem. When a NameNode fails, it is possible to recover from a previous checkpoint 
generated by the Secondary NameNode. It is important to note that the Secondary NameNode 
is not a backup for the NameNode. It performs a checkpoint process periodically. The data is 
almost certainly stale when recovering from a Secondary NameNode checkpoint. However, 
recovering from a NameNode failure using an old filesystem state is better than not being able 
to recover at all.

Getting ready
It is assumed that the system hosting the NameNode service has failed, and the  
Secondary NameNode is running on a separate machine. In addition, the fs.checkpoint.
dir property should have been set in the core-default.xml file. This property tells the 
Secondary NameNode where to save the checkpoints on the local filesystem.
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How to do it...
Carry out the following steps to recover from a NameNode failure:

1. Stop the Secondary NameNode:
$ cd /path/to/hadoop

$ bin/hadoop-daemon.sh stop secondarynamenode

2. Bring up a new machine to act as the new NameNode. This machine should  
have Hadoop installed, be configured like the previous NameNode, and ssh 
password-less login should be configured. In addition, it should have the same  
IP and hostname as the previous NameNode.

3. Copy the contents of fs.checkpoint.dir on the Secondary NameNode to  
the dfs.name.dir folder on the new NameNode machine.

4. Start the new NameNode on the new machine:
$ bin/hadoop-daemon.sh start namenode

5. Start the Secondary NameNode on the Secondary NameNode machine:
$ bin/hadoop-daemon.sh start secondarynamenode

6. Verify that the NameNode started successfully by looking at the NameNode  
status page http://head:50070/.

How it works...
We first logged into the Secondary NameNode and stopped the service. Next, we set up a 
new machine in the exact manner we set up the failed NameNode. Next, we copied all of 
the checkpoint and edit files from the Secondary NameNode to the new NameNode. This 
will allow us to recover the filesystem status, metadata, and edits at the time of the last 
checkpoint. Finally, we restarted the new NameNode and Secondary NameNode.

There's more...
Recovering using the old data is unacceptable for certain processing environments. Instead, 
another option would be to set up some type of offsite storage where the NameNode can 
write its image and edits files. This way, if there is a hardware failure of the NameNode, you 
can recover the latest filesystem without resorting to restoring old data from the Secondary 
NameNode snapshot.

The first step in this would be to designate a new machine to hold the NameNode image and 
edit file backups. Next, mount the backup machine on the NameNode server. Finally, modify 
the hdfs-site.xml file on the server running the NameNode to write to the local filesystem 
and the backup machine mount:
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$ cd /path/to/hadoop

$ vi conf/hdfs-site.xml

<property>

    <name>dfs.name.dir</name>

    <value>/path/to/hadoop/cache/hadoop/dfs, /path/to/backup</value>

</property>

Now the NameNode will write all of the filesystem metadata to both /path/to/hadoop/
cache/hadoop/dfs and the mounted /path/to/backup folders.

Monitoring cluster health using Ganglia
Ganglia is a monitoring system designed for use with clusters and grids. Hadoop can be 
configured to send periodic metrics to the Ganglia monitoring daemon, which is useful for 
diagnosing and monitoring the health of the Hadoop cluster. This recipe will explain how  
to configure Hadoop to send metrics to the Ganglia monitoring daemon.

Getting ready
Ensure that you have Ganglia Version 3.1 or better installed on all of the nodes in the Hadoop 
cluster. The Ganglia monitoring daemon (gmond) should be running on every worker node  
in the cluster. You will also need the Ganglia meta daemon (gmetad) running on at least  
one node, and another node running the Ganglia web frontend.

The following is an example with modified gmond.conf file that can be used by the  
gmond daemon:

cluster {
  name = "Hadoop Cluster"
  owner = "unspecified"
  latlong = "unspecified"
  url = "unspecified"
}

host {
  location = "my datacenter"
}

udp_send_channel {
  host = mynode.company.com
  port = 8649
  ttl = 1
}
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udp_recv_channel {
  port = 8649
}

tcp_accept_channel {
  port = 8649
}

Also, ensure that the Ganglia meta daemon configuration file includes your cluster as a data 
source. For example, modify the gmeta.conf configuration file to add the Hadoop cluster as 
a data source:

data_source "Hadoop Cluster" mynode1.company.com:8649 mynode2.company.
com:8649 mynode3.company.com:8649

How to do it...
Perform the following steps to use Ganglia to monitor cluster metrics:

1. Edit the hadoop-metrics.properties file found in the Hadoop configuration 
folder. If the hadoop-metrics.properties file does not exist, create it:

This property file will need to be updated for every node in the cluster.

$ vi /path/to/hadoop/hadoop-metrics.properties

dfs.class=org.apache.hadoop.metrics.ganglia.GangliaContext31

dfs.period=10

dfs.servers=mynode1.company.com:8649

mapred.class=org.apache.hadoop.metrics.ganglia.GangliaContext31

mapred.period=10

mapred.servers=mynode1.company.com 8649

jvm.class=org.apache.hadoop.metrics.ganglia.GangliaContext31

jvm.period=10

jvm.servers=mynode1.company.com:8649

rpc.class=org.apache.hadoop.metrics.ganglia.GangliaContext31

rpc.period=10

rpc.servers=mynode1.company.com 8649
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2. Restart the Ganglia meta daemon service.

3. Restart the Hadoop cluster:
$ cd /path/to/hadoop

$ bin/stop-all.sh

$ bin/start-all.sh

4. Verify that Ganglia is collecting Hadoop metrics via the Ganglia web frontend.

How it works...
The Ganglia monitoring daemon (gmond) is responsible for collecting metric information  
from the nodes where it is installed. Next, all of the metrics collected by the gmond daemons  
are aggregated to the Ganglia meta daemon (gmetad). Finally, the Ganglia web frontend  
will request the aggregated metrics in the form of XML from the gmetad daemon and  
report that to users via the web interface.

Tuning MapReduce job parameters
The Hadoop framework is very flexible and can be tuned using a number of configuration 
parameters. In this recipe, we will discuss the function and purpose of different configuration 
parameters you can set for a MapReduce job.

Getting ready
Ensure that you have a MapReduce job which has a job class that extends the Hadoop 
Configuration class and implements the Hadoop Tool interface, such as any  
MapReduce application we have written so far in this book.

How to do it...
Follow these steps to customize MapReduce job parameters:

1. Ensure you have a MapReduce job class which extends the Hadoop  
Configuration class and the Tool interface.

2. Use the ToolRunner.run() static method to run your MapReduce job, as shown  
in the following example:
public static void main(String[] args) throws Exception {
        int exitCode = ToolRunner.run(new MyMapReduceJob(), args);
        System.exit(exitCode);
}
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3. Examine the following table of Hadoop job properties and values:

Property name Possible values Description
mapred.reduce.tasks Integers (0 - N) Sets the number of 

reducers to launch.
mapred.child.java.opts JVM key-value pairs These parameters are 

given as arguments 
to every task JVM. For 
example, to set the 
maximum heap size for 
all tasks to 1 GB, you 
would set this property 
to '-Xmx1GB'.

mapred.map.child.java.opts JVM key-value pairs These parameters are 
given as arguments to 
every map task JVM.

mapred.reduce.child.java.
opts

JVM key-value pairs These parameters are 
given as arguments to 
every reduce task JVM.

mapred.map.tasks.
speculative.execution

Boolean (true/false) Tells the Hadoop 
framework to 
speculatively launch 
the exact same map 
task on different nodes 
in the cluster if a task 
is not performing well 
as compared to other 
tasks in the job. This 
property was discussed 
in Chapter 1, Hadoop 
Distributed File System 
– Importing and 
Exporting Data.

mapred.reduce.tasks.
speculative.execution

Boolean (true/false) Tells the Hadoop 
framework to 
speculatively launch 
the exact same reduce 
task on different nodes 
in the cluster if a task 
is not performing well 
as compared to other 
tasks in the job.
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Property name Possible values Description
mapred.job.reuse.jvm.num.
tasks

Integer (-1, 1 – N) The number of task 
JVMs to be re-used. A 
value of 1 indicates 
one JVM will be started 
per task, a value of -1 
indicates a single JVM 
can run an unlimited 
number of tasks. 
Setting this parameter 
might help increase the 
performance of small 
jobs because JVMs will 
be re-used for multiple 
tasks (as opposed to 
starting a JVM for each 
and every task).

mapred.compress.map.output

mapred.output.compression.
type

mapred.map.output.
compression.codec

Boolean (true/false)

String (NONE, RECORD, 
or BLOCK)

String (Name of 
compression codec 
class)

These three parameters 
are used to compress 
the output of map 
tasks.

mapred.output.compress

mapred.output.compression.
type

mapred.output.compression.
codec

Boolean (true/false)

String (NONE, RECORD, 
or BLOCK)

String (Name of 
compression codec 
class)

These three parameters 
are used to compress 
the output of a 
MapReduce job.

4. Execute a MapReduce job with a custom Hadoop property. For example, we will 
launch a job using five reducers:

$ cd /path/to/hadoop

$ bin/hadoop –jar MyJar.jar com.packt.MyJobClass –Dmapred.reduce.
tasks=5
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How it works...
When a job class extends the Hadoop Configuration class and implements the Hadoop 
Tool interface, the ToolRunner class will automatically handle the following generic  
Hadoop arguments:

Argument/Flag Purpose
-conf Takes a path to a parameter configuration file.
-D Used to specify Hadoop key/value properties 

which will be added to the job configuration
-fs Used to specify the host port of the NameNode
-jt Used to specify the host port of the JobTracker

In the case of this recipe, the ToolRunner class will automatically place all of the  
parameters specified with the -D flag into the job configuration XML file.



10
Persistence Using 
Apache Accumulo

In this chapter, we will cover:

 f Designing a row key to store geographic events in Accumulo

 f Using MapReduce to bulk import geographic event data into Accumulo

 f Setting a custom field constraint for inputting geographic event data in Accumulo

 f Limiting query results using the regex filtering iterator

 f Counting fatalities for different versions of the same key using SumCombiner

 f Enforcing cell-level security on scans using Accumulo

 f Aggregating sources in Accumulo using MapReduce

Introduction
Storage of big data is a topic of ever-increasing popularity. Software projects facing concerns 
over data scalability frequently find themselves having to shell out top dollar for expensive 
RDBMS commercial licenses, or worse, having to rely on solutions in which scalability was an 
afterthought. In the last couple of years, we have seen the introduction of many viable open 
source database solutions to help manage massive amounts of structured and unstructured 
data. Apache Accumulo was inspired by the Google BigTable design approach, and offers 
scalable, distributed columnar persistence of data backed over Apache Hadoop. The Google 
BigTable design is explained in detail at http://research.google.com/archive/
bigtable.html. This chapter will show several recipes that tackle common database  
query/load tasks, and also shows how many of Accumulo's unique features help to  
streamline the implementation.

http://research.google.com/archive/bigtable.html
http://research.google.com/archive/bigtable.html
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Designing a row key to store geographic 
events in Accumulo

The Armed Conflict Location Event Data (ACLED) dataset is a collection of individual 
events that occurred across a wide range of geographic areas. This recipe will show how we 
can leverage Accumulo's sorted key ordering to group ACLED event records into geographic 
ranges. Furthermore, each geographic range will be subgrouped in the descending order of 
event occurrence. Specifically, the code in this recipe shows the generation logic that we can 
turn around and use to build ACLED keys from our records. To verify that the key generator 
works as expected, we will build and run unit tests with some sample row data.

Getting ready
To run the unit tests, you will need TestNG (testng-jdk15.jar) on the environment 
classpath. Some basic familiarity with the TestNG testing API will help make sense of the  
unit tests.

This recipe makes use of a specific type of quadtree data structure that is useful for grouping 
geospatial data into indexed ranges. It will help to have some familiarity with a Z-order curve 
(a.k.a. Morton curve) to build this type of quadtree for use over 2D geospatial data.

How to do it...
Follow these steps to implement a geospatial, reverse chronological row key generator:

1. Open the Java IDE editor of your choice.

2. Create the package example.accumulo and create the interface 
RowIDGenerator.java with the following content:
package examples.accumulo;

import javax.security.auth.login.Configuration;
import java.io.IOException;

public interface RowIDGenerator {
public String getRowID(String[] parameters)
            throws IllegalArgumentException;
}

3. Under the same package example.accumulo, create a class named 
ACLEDRowIDGenerator.java with the following content:
package examples.accumulo;

import java.text.DateFormat;
import java.text.ParseException;



Chapter 10

247

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.regex.Pattern;

public class ACLEDRowIDGenerator implements RowIDGenerator {

    private DateFormat dateFormat = new 
                               SimpleDateFormat("yyyy-MM-dd");
    private static final Pattern decimalPattern = 
                               Pattern.compile("[.]");

4. We write the method getRowID() to take a list of String[] parameters.
    @Override
    public String getRowID(String[] parameters)
            throws IllegalArgumentException {
        if(parameters.length != 3)
            throw new IllegalArgumentException("Required: 
                                             {lat, lon, dtg}")
        StringBuilder builder = new StringBuilder();
        builder.append(getZOrderedCurve(parameters[0], 
                                        parameters[1]));
        builder.append("_");
        builder.append(getReverseTime(parameters[2]));
        return builder.toString();
    }

5. We add the public method getZOrderedCurve() to build the geospatial portion  
of our rowID. The public accessibility will help with unit testing:
    public String getZOrderedCurve(String lat, String lon)
            throws IllegalArgumentException {
        StringBuilder builder = new StringBuilder();
        lat = cleanAndValidatePoint(lat);
        lon = cleanAndValidatePoint(lon);
        int ceiling = Math.max(lat.length(), lon.length());
        for (int i = 0; i < ceiling; i++) {
            if(lat.length() <= i) {
                builder.append("0");
            } else {
                builder.append(lat.charAt(i));
            }
            if(lon.length() <= i) {
                builder.append("0");
            } else {
                builder.append(lon.charAt(i));
            }
        }
        return builder.toString();
    }
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6. The private method cleanAndValidatePoint() will help validate and sanitize 
lat/lon points into an appropriate form for Z-order shuffling:
    private String cleanAndValidatePoint(String point)
            throws IllegalArgumentException {

        String[] pointPieces = decimalPattern.split(point);
        if(pointPieces.length > 2) {
            throw new IllegalArgumentException("Malformed 
                                            point: " + point);
        }
        String integralStr = null;
        int integral = 0;
        try {
            //offset any negative integral portion
            integral = Integer.parseInt(pointPieces[0]) + 90;
            if(integral > 180 | integral < 0) {
               throw new IllegalArgumentException("Invalid 
integral: " + integral + " for point: " + point);
            }
            integralStr = "" + integral;
            if(pointPieces.length > 1)
                integralStr += 
                             Integer.parseInt(pointPieces[1]);
            if(integral < 10)
                integralStr = "00" + integralStr;
            else if (integral >= 10 && integral < 100)
                integralStr = "0" + integralStr;
            return  integralStr;
        } catch (NumberFormatException e) {
            throw new IllegalArgumentException("Point: " + 
                point + " contains non-numeric characters");
        }
    }

7. The public method getReverseTime() helps build the timestamp portion of the 
row key. The public accessibility will help with unit testing:
    public long getReverseTime(String dateTime)
            throws IllegalArgumentException {
        Date date = null;
        try {
            date = dateFormat.parse(dateTime);
        } catch (ParseException e) {
            throw new IllegalArgumentException(dateTime + 
                               "Could not be parsed to a " +
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                  "valid date with the supplied DateFormat " + 
dateFormat.toString());
        }
        return Long.MAX_VALUE - date.getTime();
    }
}

8. In the package examples.accumulo, create a TestNG unit test class named 
ValidatingKeyGenTest.java with the following content:
package examples.accumulo;

import org.apache.hadoop.hbase.thrift.generated.IllegalArgument;
import org.testng.annotations.BeforeClass;
import org.testng.annotations.Test;
import static org.testng.Assert.*;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;

public class ValidatingKeyGenTest {

    private ACLEDRowIDGenerator keyGen;
    private SimpleDateFormat dateFormatter = new 
                            SimpleDateFormat("yyyy-MM-dd");

9. Use the @BeforeClass annotation to create an instance of 
ACLEDRowIDGenerator.
    @BeforeClass
    public void setup() {
        keyGen = new ACLEDRowIDGenerator();
    }

10. Add the validZOrder() unit test method.
    @Test
    public void validZOrder() {
        try {
            // +90 = 123.22,134.55
            String zpoint = keyGen.getZOrderedCurve("33.22", 
                        "44.55");
            assertEquals(zpoint, "1123342525");

            // +90 = 123, 134.55
            zpoint = keyGen.getZOrderedCurve("33", "44.55"); 
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            assertEquals(zpoint, "1123340505");

            // +90 = 123.55, 134
            zpoint = keyGen.getZOrderedCurve("33.55", "44"); 
            assertEquals(zpoint, "1123345050");

            // +90 = 123.1234, 134.56
            zpoint = 
            keyGen.getZOrderedCurve("33.1234","44.56");
            assertEquals(zpoint, "11233415263040");

            // +90 = 00.11, 134.56
            zpoint = keyGen.getZOrderedCurve("-90.11", 
                                             "44.56"); 
            assertEquals(zpoint, "0103041516");

            // +90 = 005.11, 134.56
            zpoint = keyGen.getZOrderedCurve("-85.11", 
                                             "44.56"); 
            assertEquals(zpoint, "0103541516");

            // +90 = 011.11, 134.56
            zpoint = keyGen.getZOrderedCurve("-79.11", 
                                             "44.56"); 
            assertEquals(zpoint, "0113141516");

            // +90 = 095, 134.56
            zpoint = keyGen.getZOrderedCurve("5", "44.56");
            assertEquals(zpoint, "0193540506");

        } catch (Exception e) {
            fail("EXCEPTION fail: " + e.getMessage());
        }

    }

11. Add the invalidZOrder() unit test method.
    @Test
    public void invalidZOrder() {
        String zpoint = null;
        try {
            zpoint = keyGen.getZOrderedCurve("98.22", 
                                             "33.44");
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            fail("Should not parse. Too big an integral 
                  value.");
        } catch (IllegalArgumentException e) {
            assertTrue(e.getMessage().contains("invalid 
integral"));
        }

        try {
            zpoint = keyGen.getZOrderedCurve("78.22", 
                                             "-91.44");
            fail("Should not parse. Too big an integral 
                  value.");
        } catch (IllegalArgumentException e) {
            assertTrue(e.getMessage().contains("invalid 
integral"));
        }

        try {
            zpoint = 
       keyGen.getZOrderedCurve("332.22.33","33.44.33.22");
            fail("Should not parse. Too many split values.");
        } catch (IllegalArgumentException e) {
            assertTrue(e.getMessage().contains("Malformed 
                                                point"));
        }

        try {
            zpoint = keyGen.getZOrderedCurve("33.22a", 
                                             "33.33");
            fail("Should not parse. Contains bad characters.");
        } catch (IllegalArgumentException e) {
            assertTrue(e.getMessage().contains("contains non-
numeric characters"));
        }

        try {
            zpoint = keyGen.getZOrderedCurve("33.22",
                                             "3c.33");
            fail("Should not parse. Contains bad characters.");
        } catch (IllegalArgumentException e) {
            assertTrue(e.getMessage().contains("contains non-
numeric characters"));
        }
    }
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12. Add the testValidReverseTime() unit test method.
    @Test
    public void testValidReverseTime() {
        String dateStr = "2012-05-23";
        long reverse = keyGen.getReverseTime(dateStr);
        try {
            Date date = dateFormatter.parse(dateStr);
            assertEquals(reverse, (Long.MAX_VALUE – 
                         date.getTime()));
        } catch (ParseException e) {
            fail(e.getMessage());
        }
    }

13. Add the testInvalidReverseTime() unit test method.
    @Test
    public void testInvalidReverseTime() {
        try {
            long reverse = keyGen.getReverseTime("201a-22-
                                                  22");
            fail("Should not reverse invalid date for 
                  DateFormat");
        } catch (IllegalArgumentException e) {
            assertTrue(e.getMessage().contains("could not be 
parsed to a valid date with the supplied DateFormat"));
        }
    }

14. Add the testFullKey() unit test method.
    @Test
    public void testFullKey() {
        try {
            String dateStr = "2012-03-13";
            Date date = dateFormatter.parse(dateStr);
            long reverse = Long.MAX_VALUE - date.getTime();

            // +90 = 123.55, 156.77
            String key = keyGen.getRowID(new String[]{"33.55", 
"66.77", dateStr});
            assertEquals(key, "1125365757_" + reverse);
        } catch (ParseException e) {
            fail(e.getMessage());
        } catch (IllegalArgumentException e) {
            fail(e.getMessage());
        }
    }

}

15. Run the unit tests in your environment. Every test should pass.
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How it works...
This code will serve as the basis for generating geospatial/reverse chronological row keys.  
It exists as an independent component outside of any code that loads data to Accumulo. It  
is designed specifically to build row keys that will sort in a very particular order once persisted 
to an Accumulo table.

First, we define a general interface RowIDGenerator.java that could be re-used to build 
different key generator implementations. All implementing classes must fulfill a simple 
contract for getRowID(). It takes an array of arbitrary strings and returns a single string 
representing the rowID. Should any errors occur, throw an IllegalArgumentException 
exception. The class ACLEDRowIDGenerator.java requires an array of at least three 
strings for input. We then start to build the Z-order structure necessary for the rowID strategy.

The getZOrderedCurve() method takes lat and lon strings as arguments. Building an 
effect quadtree using the lat/lon point requires the points to adhere to strict formatting 
guidelines, thus before we shuffle the points, we must validate and format the points using 
the function cleanAndValidatePoint().

The function cleanAndValidatePoint() first separates the integral portion to the  
left-hand side of the decimal from the fractional portion to the right-hand side of the decimal. 
A point is not required to contain a decimal portion, but it must at least contain an integral 
portion. Additionally, there should not be multiple fraction portions. Therefore, we throw an 
IllegalArgumentException exception if splitting the point on decimal does not return a 
one- or two-element array. Moving on, we offset each point by +90 to avoid negative numbers, 
which would otherwise corrupt the Z-order interpretation. If after applying the offset we 
contain a point with integral greater than 180 or less than 0, we can conclude that the point 
either started at a number greater than 90 or a number less than -90. Both these conditions 
flag an invalid point, and we throw an IllegalArgumentException exception indicating 
such. If after these checks our point is still considered valid, it is time to start formatting it for 
proper Z-order interpretation. Depending on the length of the point, we want to zero-pad the 
beginning such that the integral portion is always of length 3. This will make more sense when 
we examine how getZOrderCurve() uses the result. If applicable, add the fractional portion 
back to the reformatted string representation without the decimal place. If at any time we get a 
NumberFormatException exception, throw an IllegalArgumentException exception.

Once both latitude and longitude points have been properly formatted, we are ready to start 
shuffling the numbers to build the quadtree. As our loop control variable, we'll take the 
greater of the two lengths when comparing latitude and longitude, and use that as our loop's 
max variable. As we cycle through i going from 0 to max, we start with lat and print the ith 
character, followed by the ith character of lon. Should we reach the length of lat before lon, 
or vice versa, print 0 for an interleaved spot in the iteration. This helps generate a consistent 
key for a given lat/lon pair no matter the discrepancy in precision between the latitude and 
longitude (that is, lat/lon: 1.23/4.56789 can be interpreted as 1.23000/4.56780).
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The general idea is to interleave the points such that the most significant digits are arranged 
in the left-to-right order. Accumulo will maintain the sorted order of our geospatial keys 
using lexicographical byte-order sorting. This means that the points pertaining to similar 
geographic regions will be arranged contiguously for effective range scans. We can quickly 
look up the given points for a particular lat/lon bounding region by building the offset 
Z-order representation of both the lower and bound bounding parameters and setting the 
start and end key ranges to the lower and upper bounding parameters respectively. For 
example, searching for all of the points between lat/lon: 30.1/60.2 and 40.8/70.9 would 
produce 120.1/150.2 and 130.8/160.9 (offset +90). The Z-order representation would thus 
have the lower-bound (start-key) value of 11250012 and an upper-bound (end-key) value of 
11360089. This is why it is critical to zero-pad the integral portion of the lat/lon points. 
Without doing so, the application would incorrectly place 1.23 near 10.3 in the table, since 
the Z-order shuffle for both points would yield a row key that started with 1.

The geospatial portion is only half of our rowID. When storing ACLED event data, we would 
like to arrange events that lie in similar lat/lon regions in reverse chronological order. The 
function getReverseTime() achieves this by appending a reverse timestamp for the given 
item to the already calculated Z-order curve, separated by an underscore token. This allows 
us to use the same table in Accumulo to further restrict queries by temporal ranges (that is, 
100 most recent, last 3 months', and so on). Events with the exact same lat/lon values will 
sort the records in the Accumulo table in the ascending order, but more recent events when 
converted to milliseconds from epoch will have larger long values. To counter this, we subtract 
the long value from the maximum possible long value. If incoming date strings do not match 
the simple date format yyyy-MM-dd, throw an exception.

The resulting keys take the form of zOrderPoint_reverseTimestamp.

The unit tests are designed to test the error handling of getZOrderCurve() and 
getReverseTime() as well as validate the expected output. We run this suite of tests to 
perform a stress test on our rowID generator before using it to load new ACLED event records 
into our Accumulo table.

There's more...
The rowID generation strategy listed in this recipe is designed to accommodate lat/lon 
geospatially bound queries with an optional time restriction for events. While this sounds  
very open-ended, there really is no one-size-fits-all solution for rowIDs when it comes to 
BigTable-designed columnar datastores. Depending on the types of queries you wish to 
perform over Accumulo, your rowID strategy might differ entirely. The following are a few  
sections that further expand on the design choices made in this recipe.
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Lexicographic sorting of keys
Accumulo arranges key-value pairs stored in a table in the lexicographical sorted order  
of the key contents. This means that keys are arranged in terms of their respective 
byte contents, which does not always conform to an expected natural ordering pattern. 
For example, consider that we wanted to persist the sequence {1,2,10} as rowIDs. The 
lexicographic order would sort 10 after 1, but before 2, which is not what we expected for  
our sequence. This recipe circumvents this limitation by using zero-padding points to create  
a fixed-length string representation where the byte sorted order matches the expected  
natural ordering. Zero-padding the mentioned sequence produces 01, 02, and 10; which, 
when sorted lexicographically, maintains the sequence 01, 02, and 10.

This technique plays a key role in the previous recipe. Without using fixed-length points,  
the Z-order shuffle of the points 1.23, 9.88 and 10.23, 9.88 would order them closer in an 
overall sorted order of the dataspace than they technically belong. The Z-order representation 
would produce 192838 and 19082830 respectively, which gives an inaccurate appearance  
of the two points being close together. In this recipe, the offset of +90 means that no point 
can exceed 180, implying a maximum integral length of three digits. By zero-padding every 
integral out to three characters (001.23 instead of 1.23, 010.23 instead of 10.23, and so on), 
the left-to-right digit ordering of the rowID more accurately reflects the point separation.

Z-order curve
Z-order curve is a technique to generate quadtrees that represent a flattened, 2-dimensional 
view of geospatial data. A more in-depth explanation can be found in Wikipedia at  
http://en.wikipedia.org/wiki/Z-order_curve

Specifically, this recipe uses the technique to produce rowIDs that are flexible for range 
queries involving lat/lon points where the precision of the upper/lower bounding 
parameters can vary. The left-to-right placement of significant digits in the rowID means  
that a shorter Z-order queryID will match on more rows that begin with the supplied  
queryID pattern than would a longer queryID pattern. Take, for example, the lat/lon 
bounded query 30.1/40.2 and 50.7/60.8; when interleaved, this produces a start-key  
of 340012 and an end-key of 560078. However, the same table could be used for a more 
precise bounded range query such as 30.123/40.234 and 50.789/60.891, which yields  
start keys 3400122334 and 5600788991. The former, less verbose start- or end-key  
range will return more rows than the latter, which is what you would expect.

See also
 f Using MapReduce to bulk import geographic event data into Accumulo

http://en.wikipedia.org/wiki/Z-order_curve
http://en.wikipedia.org/wiki/Z-order_curve
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Using MapReduce to bulk import geographic 
event data into Accumulo

This recipe will use MapReduce to load tab-separated ACLED event data directly into an 
Accumulo table.

Getting ready
This recipe will be the easiest to test over a pseudo-distributed Hadoop cluster with Accumulo 
1.4.1 and Zookeeper 3.3.3 installed. The shell script in this recipe assumes that Zookeeper is 
running on the host localhost on port 2181; you can change this to suit your environment 
needs. The Accumulo installation's bin folder needs to be on your environment path.

For this recipe, you'll need to create an Accumulo instance named test with the user as 
root and password as password (top-notch security, I know…).

You will need the dataset ACLED_nigeria_cleaned.tsv loaded into HDFS at the path /
input/acled_cleaned/.

It is also highly recommended that you complete the Designing a row key to store 
geographic events in Accumulo recipe earlier in this chapter. This recipe will use the classes 
AccumuloTableAssistant.java and ACLEDRowIDGenerator.java, and its parent 
interface RowIDGenerator.java to help with the setup.

How to do it...
Follow these steps to bulk load events into Accumulo using MapReduce:

1. Open the Java IDE editor of your choice.

2. Create a build template that produces a JAR file named accumulo-examples.jar.

3. Create the package example.accumulo and add RowIDGenerator.java, 
AccumuloTableAssistant.java, and ACLEDRowIDGenerator.java.

4. You will need to configure the Accumulo core and Hadoop classpath dependencies.

5. Create the class ACLEDIngest.java with the following content:
package examples.accumulo;

import org.apache.accumulo.core.client.mapreduce.
AccumuloFileOutputFormat;
import org.apache.accumulo.core.client.mapreduce.lib.partition.
RangePartitioner;
import org.apache.accumulo.core.data.Key;
import org.apache.accumulo.core.data.Value;



Chapter 10

257

import org.apache.accumulo.core.util.CachedConfiguration;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.io.IOException;
import java.util.regex.Pattern;

public class ACLEDIngest extends Configured implements Tool {

    private Configuration conf;

    public ACLEDIngest(Configuration conf) {
        this.conf = conf;
    }

6. The run() method is where we create and submit the job.
    @Override
    public int run(String[] args) throws Exception {

        if(args.length < 8) {
            System.err.println(printUsage());
            System.exit(0);
        }

        Job job = new Job(conf, "ACLED ingest 
                           to Accumulo");
        job.setInputFormatClass(TextInputFormat.class);
        job.setMapperClass(ACLEDIngestMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);
        job.setReducerClass(ACLEDIngestReducer.class);
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        job.setPartitionerClass(RangePartitioner.class);
        job.setJarByClass(getClass());

        String input = args[0];
        String outputStr = args[1];
        String instanceName = args[2];
        String tableName = args[3];
        String user = args[4];
        String pass = args[5];
        String zooQuorum = args[6];
        String localSplitFile = args[7];

        FileInputFormat.addInputPath(job, new Path(input));
        AccumuloFileOutputFormat.setOutputPath(job, 
                                clearOutputDir(outputStr));
        job.setOutputFormatClass( 
                           AccumuloFileOutputFormat.class);

7. Create the AccumuloTableAssistant instance to help create and presplit the 
acled table.
        AccumuloTableAssistant tableAssistant = new 
                     AccumuloTableAssistant.Builder()
         .setInstanceName(instanceName)
         .setTableName(tableName).setUser(user)
         .setPassword(pass)
         .setZooQuorum(zooQuorum)
         .build();

        String splitFileInHDFS = "/tmp/splits.txt";
        int numSplits = 0;
        tableAssistant.createTableIfNotExists();
        if(localSplitFile != null) {
            numSplits = tableAssistant.
presplitAndWriteHDFSFile(conf, localSplitFile, splitFileInHDFS);
        }
        RangePartitioner.setSplitFile(job, splitFileInHDFS);
        job.setNumReduceTasks(numSplits + 1);

        if(job.waitForCompletion(true)) {
            tableAssistant.loadImportDirectory(conf, outputStr);
        }
        return 0;
    }
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8. Create printUsage() and clearOutputDir() to show argument order and to 
automatically clear the supplied output directory.
    private String printUsage() {
        return "<input> <output> <instance_name> <tablename> +
                "<username> <password> <zoohosts> <splits_file_
path>";
    }

    private Path clearOutputDir(String outputStr)
            throws IOException {
        FileSystem fs = FileSystem.get(conf);
        Path path = new Path(outputStr);
        fs.delete(path, true);
        return path;
    }

9. Create a static nested map class called ACLEDIngestMapper.java.
    public static class ACLEDIngestMapper
            extends Mapper<LongWritable, Text, Text, Text> {

        private Text outKey = new Text();
        private static final Pattern tabPattern = 
                                Pattern.compile("[\\t]");
        private ACLEDRowIDGenerator gen = new 
                                   ACLEDRowIDGenerator();

        protected void map(LongWritable key, Text value,
                           Context context) throws IOException, 
InterruptedException {

            String[] values = 
                      tabPattern.split(value.toString());
            if(values.length == 8) {
                String [] rowKeyFields = new String[]
               // lat,lon,timestamp
              {values[4], values[5], values[1]}; 

                outKey.set(gen.getRowID(rowKeyFields));
                context.write(outKey, value);
            } else {
                context.getCounter("ACLED Ingest", 
                      "malformed records").increment(1l);
            }
        }
    }
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10. Create a static nested reduce class called ACLEDIngestReducer.java.
    public static class ACLEDIngestReducer
            extends Reducer<Text, Text, Key, Value> {

        private Key outKey;
        private Value outValue = new Value();
        private Text cf = new Text("cf");
        private Text qual = new Text();
        private static final Pattern tabPattern = 
                             Pattern.compile("[\\t]");

        @Override
        protected void reduce(Text key, Iterable<Text> values,
                              Context context) throws 
                      IOException, InterruptedException {

            int found = 0;
            for(Text value : values) {
                String[] cells = 
                       tabPattern.split(value.toString());
                if(cells.length == 8) {
                 // don't write duplicates
                    if(found < 1) { 
                    write(context,  key, cells[3],"atr");
                    write(context,  key, cells[1], "dtg");
                    write(context,  key, cells[7], "fat");
                    write(context,  key, cells[4], "lat");
                    write(context,  key, cells[0], "loc");
                    write(context,  key, cells[5], "lon");
                    write(context,  key, cells[6], "src");
                    write(context,  key, cells[2],"type");
                    } else {
                       context.getCounter("ACLED Ingest", 
                              "duplicates").increment(1l);
                    }
                } else {
                    context.getCounter("ACLED Ingest",
"malformed records missing a field").increment(1l);
                }
                found++;
            }
        }
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11. Create the following method inside the reduce class to help output key-value pairs:
        private void write(Context context, Text key,
                              String cell, String qualStr)
                throws IOException, InterruptedException {
            if(!cell.toUpperCase().equals("NULL")) {
                qual.set(qualStr);
                outKey = new Key(key, cf, qual, 
                              System.currentTimeMillis());
                outValue.set(cell.getBytes());
                context.write(outKey, outValue);
            }
        }

    }

    @Override
    public void setConf(Configuration conf) {
        this.conf = conf;
    }

    @Override
    public Configuration getConf() {
        return conf;
    }

12. Add the main class to submit an instance of your job to the ToolRunner class.
    public static void main(String[] args) throws Exception {
        Configuration conf = 
                            CachedConfiguration.getInstance();
        args = new GenericOptionsParser(conf, 
                                     args).getRemainingArgs();
        ToolRunner.run(new ACLEDIngest(conf), args);
    }
}

13. Save the code and build accumulo-examples.jar to the base working directory.

14. Create a file named splits.txt in the base working folder with the following 
strings: 00, 01, 10, 11; each on their own line in the file.
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15. Create a launcher shell script named bulk_ingest.sh in the base working folder 
that has the following contents:
tool.sh accumulo_examples.jar examples.accumulo.ACLEDIngest\

 /input/acled_cleaned/\

 /output/accumulo_acled_load/\

 test\

 acled\

 root\

 password\

 localhost:2181\

 splits.txt

16. Run the script. You should see the job execute in the MapReduce WebUI. Upon 
completion, the ACLED data should be available for scan under the table acled  
in Accumulo.

How it works...
The program takes in eight arguments, each of which is very important. The input location  
is where MapReduce will find the ACLED data. The output folder is where it will output data  
in Accumulo's native RFile format. The string test is our testing Accumulo instance  
name stored in Zookeeper. The string acled is our desired table name in Accumulo.  
We authenticate with the Accumulo instance using the strings root:password. For this 
execution, we supplied one Zookeeper host on localhost:2181. Finally, splits.txt  
is used to help presplit our newly created acled table.

The program clears any previous folder located in our output location. We configure the 
AccumuloFileOutputFormat to write to this location. For this job, the mapper will output 
the type Text for both the key and the value.

AccumuloTableAssistant utilizes the Builder pattern to chain setter calls for object 
instantiation and helps avoid accidentally misplacing the arguments during construction  
time. We'll create the table acled if it does not exist, and will use the assistant to presplit  
the table based on our locally supplied splits.txt file. Without presplitting the table at 
creation time, the RangePartitioner class would force all of the intermediate key-value 
pairs to a single reducer. It is much more efficient to create presplit tablets based on  
expected row-key distribution and to allow multiple reducers to build RFiles in parallel. We 
set the number of reducers to the number of entries in our splits.txt file plus 1 to handle 
keys that fall above our highest split point (11). Finally, we are ready to submit the job and  
to examine the map and reduce phases.
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Each map task JVM creates an internal instance of ACLEDRowIDGenerator. See the 
Designing a row key to store geographic events in Accumulo recipe in this chapter for an 
in-depth explanation of how this class works. Our data is tab-delimited and follows a very 
strict column ordering, thus we can hand-pick the column indices to read the values for lat, 
lon, and dtg in that respective order. The key generator needs these fields to make a valid 
composite geospatial and reverse timestamp rowID. We output the generated row key with  
the text value that was read for the line. This produces a distinct intermediate key for every 
unique rowID we wish to insert into Accumulo.

The reducer is responsible for taking our generated rowID and reading through any other 
delimited lines that output an equivalent rowID. The rowID generator in the map phase builds 
unique rowIDs based on the composite of lat, lon, and dtg. By definition, an ACLED event 
that took place in the exact same lat/lon with the same reverse timestamp, would be grouped 
to the same intermediate key for the reducer. However, having multiple ACLED events with the 
exact same rowID means that we have duplicate entries we wish to ignore. Therefore, we only 
want to preserve the first value collected in the Iterable object. This job does not do any 
duplicate merging. We use a counter to keep track of duplicate occurrences, as well as invalid 
lines that don't split properly. Since we are directly writing instances of Key/Value as RFiles, 
Accumulo requires key/value objects to be inserted in a sorted order. The rowIDs are naturally 
the same for each qualifier, and the column family is a static label cf, but it's very important 
that we maintain lexicographical ordering while considering the write order for our qualifier 
labels. Fortunately, our data is very predictable, and we hardcode the column value reads based 
on the alphabetic ordering of our qualifier labels.

Once the job is finished, and we have all of the RFiles for the presplit tablets, we use the assistant 
instance to read all of the files produced to the output directly and place them in the appropriate 
tablet. The data is immediately available for querying in the acled table in Accumulo.

There's more...
Here is a bit more explanation on some of the design choices you see in this recipe:

AccumuloTableAssistant.java
This class is designed for re-use across different Accumulo data loading and management 
applications. Since it requires five input strings for operation, the Builder pattern was an 
obvious choice to prevent accidental variable assignment constructions. See Effective Java 
2.0 by Joshua Block for more detail on the Builder design pattern.

Split points
The choice of 00, 01, 10, and 11 as split points was entirely arbitrary. It was more to 
emphasize the importance of presplitting Accumulo tables during creation. Choosing the 
right split points really depends on the distribution of your rowID ranges. Too few split points 
and job throughput will bottleneck at the reduce stage. Too many, and you may start to waste 
resources and spin up time on underutilized reduce task JVMs.
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AccumuloOutputFormat versus AccumuloFileOutputFormat
If you need to ingest data at a massive volume, AccumuloFileOutputFormat is 
the obvious choice. Producing RFiles for direct insert into tablets is not subject to the 
AccumuloOutputFormat overhead of writing mutations directly to the Accumulo table. On 
the other hand, if your MapReduce job is not write-intensive, it can be easier to work directly 
with Mutation instances instead of RFiles. Moreover, if your job does not require reduction 
and is map-only, AccumuloOutputFormat and writing direct mutations would be a much 
simpler design choice.

See also
 f Designing a row key to store geographic events in Accumulo

Setting a custom field constraint for
inputting geographic event data in 
Accumulo

In this recipe, we will build a custom Constraint class to limit the types of mutations we  
can apply to event date values in an Accumulo table. Specifically, we want newly entered 
values to conform to a particular SimpleDateFormat pattern, but these values should  
not be in the future according to the system time on the TabletServer.

Getting ready
This recipe will be the easiest to test over a pseudo-distributed Hadoop cluster with  
Accumulo 1.4.1 and Zookeeper 3.3.3 installed. The shell script in this recipe assumes that 
Zookeeper is running on the host localhost and on the port 2181; you can change this 
to suit your environment needs. The Accumulo installation's bin folder needs to be on your 
environment path.

For this recipe you'll need to create an Accumulo instance named test with user as root 
and password as password.

You will need a table by the name acled to exist in the configured Accumulo instance.

It is also highly recommended that you go through the Using MapReduce to bulk import 
geographic event data into Accumulo recipe of this chapter. This will give you some sample 
data with which you can experiment.
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How to do it...
Follow these steps to implement and install a constraint in Accumulo:

1. Open the Java IDE editor of your choice. You will need to configure the Accumulo  
core and Hadoop classpath dependencies.

2. Create a build template that produces a JAR file named accumulo-examples.jar.

3. Create the package example.accumulo and create the class DtgConstraint.
java with the following content:
package examples.accumulo;

import org.apache.accumulo.core.constraints.Constraint;
import org.apache.accumulo.core.data.ColumnUpdate;
import org.apache.accumulo.core.data.Mutation;

import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.List;

public class DtgConstraint implements Constraint {

    private static final short DATE_IN_FUTURE = 1;
    private static final short MALFORMED_DATE = 2;
    private static final byte[] dtgBytes = "dtg".getBytes();
    private static final DateFormat dateFormatter = new 
                       SimpleDateFormat("yyyy-MM-dd");

    public String getViolationDescription(short violationCode) {
        if(violationCode == DATE_IN_FUTURE) {
            return "Date cannot be in future";
        } else if(violationCode == MALFORMED_DATE) {
            return "Date does not match simple date format 
                    yyyy-MM-dd";
        }
        return null;
    }
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4. Implement the check()method.
    @Override
    public List<Short> check(Environment env, Mutation mutation) {
        List<Short> violations = null;
        try {
            for(ColumnUpdate update : mutation.getUpdates()) {
                if(isDtg(update)) {
                    long dtgTime = dateFormatter.parse(new 
                      String(update.getValue())).getTime();
                    long currentMillis = 
                                System.currentTimeMillis();
                    if(currentMillis < dtgTime) {
                        violations = checkAndAdd(
                               violations, DATE_IN_FUTURE);
                    }
                }
            }
        } catch (ParseException e) {
            violations = checkAndAdd(violations, 
                                     MALFORMED_DATE);
        }
        return violations;
    }

5. Do a byte comparison to check if the update is for the qualifier dtg.
    private boolean isDtg(ColumnUpdate update) {
        byte[] qual = update.getColumnQualifier();
        if(qual.length != dtgBytes.length)
            return false;
        for (int i = 0; i < qual.length; i++) {
            if(!(qual[i] == dtgBytes[i])) {
               return false;
            }
        }
        return true;
    }

    private List<Short> checkAndAdd(List<Short> violations, 
                                    short violationCode) {
        if(violations == null)
            violations = new ArrayList<Short>();
        violations.add(violationCode);
        return violations;
    }
}
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6. Save the class.

7. In the same package, examples.accumulo, create the class 
DtgConstraintMain.java with the following content:
package examples.accumulo;

import org.apache.accumulo.core.client.*;
import org.apache.accumulo.core.conf.Property;
import org.apache.accumulo.core.data.ConstraintViolationSummary;
import org.apache.accumulo.core.data.Mutation;
import org.apache.accumulo.core.data.Value;
import org.apache.hadoop.io.Text;

import java.util.List;

public class DtgConstraintMain {

    public static final long MAX_MEMORY= 10000L;
    public static final long MAX_LATENCY=1000L;
    public static final int MAX_WRITE_THREADS = 4;
    public static final String TEST_TABLE = "acled";
    public static final Text COLUMN_FAMILY = new Text("cf");
    public static final Text DTG_QUAL = new Text("dtg");

8. The main() method tries to insert both valid and invalid dtg values to test our 
constraint.
    public static void main(String[] args) throws Exception {
        if(args.length < 6) {
System.err.println("examples.accumulo.DtgConstraintMain <row_id> 
<dtg> <instance_name> <user> <password> <zookeepers>");
            System.exit(0);
        }
        String rowID = args[0];
        byte[] dtg = args[1].getBytes();
        String instanceName = args[2];
        String user = args[3];
        String pass = args[4];
        String zooQuorum = args[5];
        ZooKeeperInstance ins;
        Connector connector = null;
        BatchWriter writer = null;
        try {

            ins = new ZooKeeperInstance(instanceName, 
                                        zooQuorum);
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            connector = ins.getConnector(user, pass);
            writer = connector.createBatchWriter(TEST_TABLE, MAX_
MEMORY, 
                           MAX_LATENCY, MAX_WRITE_THREADS);
connector.tableOperations().setProperty(TEST_TABLE, Property.
TABLE_CONSTRAINT_PREFIX.getKey() + 1, DtgConstraint.class.
getName());
            Mutation validMutation = new Mutation(new 
                                         Text(rowID));
            validMutation.put(COLUMN_FAMILY, DTG_QUAL, 
                              new Value(dtg));
            writer.addMutation(validMutation);
            writer.close();
        } catch (MutationsRejectedException e) {
            List<ConstraintViolationSummary> summaries = 
                 e.getConstraintViolationSummaries();
            for (ConstraintViolationSummary sum : summaries) {
                System.err.println(sum.toString());
            }
        }
    }
}

9. Build the JAR file, accumulo-examples.jar.

10. Navigate to your local Accumulo installation folder, $ACCUMULO_HOME/conf, and 
edit the file accumulo-site.xml.

11. Edit the general.classpaths property in the accumulo-site.xml file to include 
the path to accumulo-examples.jar.

12. Restart the local TabletServer for Accumulo using $ACCUMULO_HOME/bin/tdown.
sh and tup.sh.

13. Issue the following command to test whether the JAR file is on the Accumulo 
classpath:
$ accumulo classpath

You should see a file //printout with accumulo-examples.jar.

14. In the base working folder where accumulo-examples.jar is located, create a 
new shell script named run_constraint_test.sh with the following commands. 
Be sure to change ACCUMULO-LIB, HADOOP_LIB, and ZOOKEEPER_LIB to match 
your local paths.
ACCUMULO_LIB=/opt/cloud/accumulo-1.4.1/lib/*

HADOOP_LIB=/Applications/hadoop-0.20.2-cdh3u1/*:/Applications/
hadoop-0.20.2-cdh3u1/lib/*
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ZOOKEEPER_LIB=/opt/cloud/zookeeper-3.4.2/*

java -cp $ACCUMULO_LIB:$HADOOP_LIB:$ZOOKEEPER_LIB:accumulo-
examples.jar examples.accumulo.DtgConstraintMain\

 00993877573819_9223370801921575807\

 2012-08-07\

 test\

 root\

 password\

 localhost:2181

15. Save and run the script. It should silently complete.

16. Edit the script run_constraint_test.sh and change the value of the dtg 
parameter from 2012-08-07 to 2030-08-07.

17. Save and re-run the script. You should see a constraint error printed to the console 
indicating Date cannot be in future.

How it works...
Our Constraint class looks through every mutation and determines if the column  
qualifier matching dtg is involved. If the ColumnUpdate object mutates a key-value  
pair containing the qualifier dtg, examine the value for errors. This constraint has the 
following two violation conditions:

1. The date does not match the Java SimpleDateFormat pattern, yyyy-MM-dd. So 
1970-12-23 and 2012-02-11 will pass, but 70-12-23 or 12-20-22 will generate an 
error and add a constraint violation.

2. The date is in the future. At the time of this writing, 2030-08-07 was 18 years in  
the future. If the column update contains a future date, add a constraint violation.

The main class takes all of the required parameters to connect to the Accumulo instance 
and adds the Constraint class to the table. It then attempts to perform a mutation on the 
supplied rowID using the argument value for dtg. If the mutation is rejected for any reason, 
print out the constraint violations to see if the DtgConstraint was violated.

We can modify the dtg argument in the shell script to see the different constraint violation 
errors our class generated.

There's more...
Constraints are a powerful feature for data policy enforcement in Accumulo. The following 
headings discuss a few additional things you should know.
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Bundled Constraint classes
The Accumulo core offers numerous constraint implementations out of the box. They cover a 
variety of common checked conditions and are already on the TabletServer classpath. Check 
out the example implementations in the simple example's module located at the package 
org.apache.accumulo.examples.simple.constraints. Cell visibility and other core 
system checks in Accumulo use constraint implementations behind the scenes.

Installing a constraint on each TabletServer
If after installing a custom constraint to your Accumulo instance, you'll notice every 
mutation being rejected; it's likely that, for whatever reason, the TabletServer server 
did not find your Constraint class on the classpath. Check the TabletServer logs 
for ClassNotFoundExceptions. This can happen if the table configuration has the 
Constraint class listed but cannot find a class matching the fully qualified name. In  
a fully-distributed setup, make sure to restart every TabletServer after modifying each  
general classpath.

See also
 f Using MapReduce to bulk import geographic event data into Accumulo

 f Enforcing cell-level security on scans using Accumulo

Limiting query results using the regex 
filtering iterator

This recipe will use the built-in RegExFilter class in Accumulo to return only key-value pairs, 
where the qualifier is of a particular source value. The filtering will be distributed across the 
different TabletServers that house the table acled.

Getting ready
This recipe will be the easiest to test over a pseudo-distributed Hadoop cluster with  
Accumulo 1.4.1 and Zookeeper 3.3.3 installed. The shell script in this recipe assumes that 
Zookeeper is running on the host localhost and on the port 2181; you can change this 
to suit your environment needs. The Accumulo installation's bin folder needs to be on your 
environment path.

For this recipe you'll need to create an Accumulo instance named test with the user as root 
and password as password.

To see the filtered results from this recipe, you will need to complete the Using MapReduce to 
bulk import geographic event data into Accumulo recipe listed earlier in this chapter. This will 
give you some sample data to experiment with.
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How to do it...
Follow these steps to use the Regex filtering iterator:

1. Open your Java IDE of choice. You will need to configure the Accumulo core and 
Hadoop classpath dependencies.

2. Create a build template that produces a JAR file named accumulo-examples.jar.

3. Create the package example.accumulo and add the class SourceFilterMain.
java with the following content:
package examples.accumulo;

import org.apache.accumulo.core.client.Connector;
import org.apache.accumulo.core.client.IteratorSetting;
import org.apache.accumulo.core.client.Scanner;
import org.apache.accumulo.core.client.ZooKeeperInstance;
import org.apache.accumulo.core.data.Key;
import org.apache.accumulo.core.data.Value;
import org.apache.accumulo.core.iterators.user.RegExFilter;
import org.apache.accumulo.core.security.Authorizations;
import org.apache.hadoop.io.Text;

import java.util.HashMap;
import java.util.Map;

public class SourceFilterMain {

    public static final String TEST_TABLE = "acled";

    public static final Text COLUMN_FAMILY = new Text("cf");
    public static final Text SRC_QUAL = new Text("src");

4. The main() method handles argument parsing and querying with the filter:
    public static void main(String[] args) throws Exception {
        if(args.length < 5) {
            System.err.println("usage: <src> <instance 
                name> <user> <password> <zookeepers>");
            System.exit(0);
        }
        String src = args[0];
        String instanceName = args[1];
        String user = args[2];
        String pass = args[3];
        String zooQuorum = args[4];
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        ZooKeeperInstance ins = new 
                ZooKeeperInstance(instanceName, zooQuorum);
        Connector connector = ins.getConnector(user, pass);
        Scanner scan = connector.createScanner(TEST_TABLE, 
                       new Authorizations());
        scan.fetchColumn(COLUMN_FAMILY, SRC_QUAL);
        IteratorSetting iter = new IteratorSetting(15, 
                         "regexfilter", RegExFilter.class);
        iter.addOption(RegExFilter.VALUE_REGEX, src);
        scan.addScanIterator(iter);
        int count = 0;
        for(Map.Entry<Key, Value> row : scan) {
          System.out.println("row: " + 
                         row.getKey().getRow().toString());
          count++;
        }
        System.out.println("total rows: " + count);
    }
}

5. Save and build the JAR file accumulo-examples.jar.

6. In the base working folder where accumulo-examples.jar is located, create a 
new shell script named run_src_filter.sh with the following commands. Be  
sure to change ACCUMULO-LIB, HADOOP_LIB, and ZOOKEEPER_LIB to match  
your local paths:
ACCUMULO_LIB=/opt/cloud/accumulo-1.4.1/lib/*

HADOOP_LIB=/Applications/hadoop-0.20.2-

cdh3u1/*:/Applications/hadoop-0.20.2-cdh3u1/lib/*

ZOOKEEPER_LIB=/opt/cloud/zookeeper-3.4.2/*

java -cp $ACCUMULO_LIB:$HADOOP_LIB:$ZOOKEEPER_LIB:accumulo-
examples.jar examples.accumulo.SourceFilterMain\

 'Panafrican News Agency'\

 test\

 root\

 password\

 localhost:2181

7. Save and run the script. You should see 49 rows returned for the source 
Panafrican News Agency.
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How it works...
The script takes in the required parameters necessary to connect to the Accumulo table 
acled, plus an additional parameter for a source qualifier value to filter on. We set up a 
Scanner instance with blank authorizations and configure an IteratorSetting of type 
RegExFilter to do the regex comparison on the TabletServer. Our regex is a very simple 
direct match on the supplied source argument.

We then iterate over the result set and printout the rowID for any matching key-value pairs.  
At the end, we print a tally of how many key-value pairs were found matching that source.

The responsibility of filtering key-value pairs based on the value is distributed across the 
various TabletServers that hold tablets for the acled table. The client only sees rows that 
match the filter, and can immediately begin processing.

See also
 f Using MapReduce to bulk import geographic event data into Accumulo

 f Enforcing cell-level security on scans using Accumulo

Counting fatalities for different versions of 
the same key using SumCombiner

This recipe will use the built-in SumCombiner in Accumulo to treat the cell value associated 
with the qualifier fat as long and for each key in the acled table, to sum the total for all 
versions of the key.

Getting ready
This recipe will be easiest to test over a pseudo-distributed Hadoop cluster with Accumulo 1.4.1 
and Zookeeper 3.3.3 installed. The shell script in this recipe assumes that Zookeeper is running 
on the host localhost and on the port 2181; you can change this to suit your environment 
needs. The Accumulo installation's bin folder needs to be on your environment path.

For this recipe, you'll need to create an Accumulo instance named test with user as root 
and password as password.

You will need a table by the name acled to exist in the configured Accumulo instance. If you 
have an existing table by that name from an earlier recipe, delete and recreate it.

It is also highly recommended that you complete the Using MapReduce to bulk import 
geographic event data into Accumulo recipe earlier in this chapter. This will give you some 
sample data to experiment with.
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How to do it...
Follow these steps to issue a query using SumCombiner:

1. Open your Java IDE of choice. You will need to configure the Accumulo core and 
Hadoop classpath dependencies.

2. Create a build template that produces a JAR file named accumulo-examples.jar.

3. Create the package example.accumulo and add the class 
TotalFatalityCombinerMain.java with the following content:
package examples.accumulo;

import org.apache.accumulo.core.client.*;
import org.apache.accumulo.core.client.Scanner;
import org.apache.accumulo.core.data.*;
import org.apache.accumulo.core.iterators.Combiner;
import org.apache.accumulo.core.iterators.LongCombiner;
import org.apache.accumulo.core.iterators.user.SummingCombiner;
import org.apache.accumulo.core.security.Authorizations;
import org.apache.hadoop.io.Text;

import java.util.*;

public class TotalFatalityCombinerMain {

    public static final long MAX_MEMORY= 10000L;
    public static final long MAX_LATENCY=1000L;
    public static final int MAX_WRITE_THREADS = 4;
    public static final String TEST_TABLE = "acled";
    public static final Text COLUMN_FAMILY = new Text("cf");
    public static final Text FATALITIES_QUAL = new Text("fat");

4. The main() method handles the argument parsing:
    public static void main(String[] args) throws Exception {
        if(args.length < 4) {
            System.err.println("usage: <instance name>  
                       <user> <password> <zookeepers>");
            System.exit(0);
        }
        String instanceName = args[0];
        String user = args[1];
        String pass = args[2];
        String zooQuorum = args[3];
        ZooKeeperInstance ins = new 
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                ZooKeeperInstance(instanceName, zooQuorum);
        Connector connector = ins.getConnector(user, pass);
        if(!connector.tableOperations().exists(TEST_TABLE))
           connector.tableOperations().create(TEST_TABLE);

        BatchWriter writer = connector.createBatchWriter(TEST_
TABLE, MAX_MEMORY, MAX_LATENCY, MAX_WRITE_THREADS);

5. Write some sample data with the exact same rowID eventA, column family,  
and qualifier:
        Mutation m1 = new Mutation("eventA");
        m1.put(COLUMN_FAMILY, FATALITIES_QUAL, new 
               Value("10".getBytes()));

        Mutation m2 = new Mutation("eventA");
        m2.put(COLUMN_FAMILY, FATALITIES_QUAL, new 
               Value("5".getBytes()));

6. Write an additional key with rowID eventB:
        Mutation m3 = new Mutation("eventB");
        m3.put(COLUMN_FAMILY, FATALITIES_QUAL, new 
               Value("7".getBytes()));

        writer.addMutation(m1);
        writer.addMutation(m2);
        writer.addMutation(m3);
        writer.close();

7. Configure an IteratorSetting for the scanner to use the combiner:
        IteratorSetting iter = new IteratorSetting(1, 
                               SummingCombiner.class);
        LongCombiner.setEncodingType(iter, 
                              SummingCombiner.Type.STRING);
        Combiner.setColumns(iter, 
                      Collections.singletonList(new 
                      IteratorSetting.Column(COLUMN_FAMILY,
                                        FATALITIES_QUAL)));
        Scanner scan = connector.createScanner(TEST_TABLE, 
                       new Authorizations());
        scan.setRange(new Range(new Text("eventA"), new 
                                Text("eventB")));
        scan.fetchColumn(COLUMN_FAMILY, FATALITIES_QUAL);
        scan.addScanIterator(iter);
        for(Map.Entry<Key, Value> item : scan) {
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            System.out.print(item.getKey().getRow().toString() + 
": 
                 fatalities: ");
        System.out.println(new 
                           String(item.getValue().get()));
        }
    }
}

8. Save and build the JAR file accumulo-examples.jar.

9. In the base working folder where the accumulo-examples.jar file is located, 
create a new shell script namedrun_combiner.sh with the following commands.  
Be sure to change ACCUMULO-LIB, HADOOP_LIB, and ZOOKEEPER_LIB to match 
your local paths:
ACCUMULO_LIB=/opt/cloud/accumulo-1.4.1/lib/*

HADOOP_LIB=/Applications/hadoop-0.20.2-cdh3u1/*:/Applications/
hadoop-0.20.2-cdh3u1/lib/*

ZOOKEEPER_LIB=/opt/cloud/zookeeper-3.4.2/*

java -cp $ACCUMULO_LIB:$HADOOP_LIB:$ZOOKEEPER_LIB:accumulo-
examples.jar examples.accumulo.TotalFatalityCombinerMain\

test\

root\

 password\

 localhost:2181

10. Save and run the script.

11. You should see the following console printout when the application finishes:
eventA: fatalities: 15

eventB: fatalities: 7

12. Re-run the script.

13. You should now see twice the count for each event:

eventA: fatalities: 30

eventB: fatalities: 14



Chapter 10

277

How it works...
The class TotalFatalityCombinerMain reads the required arguments to connect to 
Accumulo and instantiates a BatchWriter instance to write out test data to the acled table. 
We write two mutations for two different versions of the same key containing the rowID eventA. 
One contains the qualifier fat with value 10 and the other a value of 5. We also write one 
mutation with the key containing the rowID eventB with a value of 7 for the qualifier fat.

We then use a Scanner instance to apply the SumCombiner at scan time over the  
key-value pairs in the table. The combiner's job is to collect different long values associated  
with the exact same key and emit the sum of those long values. The values 5 and 10 are both 
associated with the same key for the rowID eventA, and are combined to produce a value 15. 
There is only one key version associated with the rowID eventB, so the single value 7 remains 
the total sum for that key.

If we re-run this application, the previous mutations are still stored in the same Accumulo 
table. Re-running the application applies the same mutations once more, adding the values 
10 and 5 as key-value entries for the rowID eventA, and 7 for eventB.

Re-running the Combiner scanner now shows four entries for the rowID eventA (5, 10, 5, 
and 10) as well as two entries for the rowID eventB (7, 7). The result is double the count  
from our previous execution. For each time we re-run this application without clearing the 
table, the results are increased by +15 and +7.

This happens because at the raw key-value level, our mutations are inserting new key-value 
pairs to the table with different timestamps every time the application is called. Our combiner 
sees all timestamped versions of every distinct key.

There's more...
Here are some more helpful tips regarding combiners:

Combiners are on a per-key basis, not across all keys
This can cause confusion with new Accumulo users. Combiners use the Accumulo iterator 
pattern for key-value aggregation, but only a per-key basis across different versions of that 
key. If you have a requirement to do table-wide aggregation for the values of a common 
qualifier, you will likely still want to use MapReduce. See the Aggregating sources in  
Accumulo using MapReduce recipe in this chapter.



Persistence Using Apache Accumulo

278

Combiners can be applied at scan time or applied to the table 
configuration for incoming mutations
This recipe uses the combiner to aggregate the qualifier values at scan time. Accumulo also 
supports persistent combiners stored in the table configuration that combine values during 
mutation writes.

See also
 f Using MapReduce to bulk import geographic event data into Accumulo

 f Limiting query results using the regex filtering iterator

 f Aggregating sources in Accumulo using MapReduce

Enforcing cell-level security on scans using 
Accumulo

Accumulo offers the ability to apply cell visibility labels for each unique key/value in a table, 
which is arguably its most distinguishing feature from other BigTable implementations. This 
recipe will demonstrate one way to apply cell-level security. The code in this recipe will write 
several mutations that can only be scanned and read with the proper authorizations.

Getting ready
This recipe will be the easiest to test over a pseudo-distributed Hadoop cluster with  
Accumulo 1.4.1 and Zookeeper 3.3.3 installed. The shell script in this recipe assumes that 
Zookeeper is running on the host localhost and on the port 2181; you can change this 
to suit your environment needs. The Accumulo installation's bin folder needs to be on your 
environment path.

For this recipe you'll need to create an Accumulo instance named test with user as root 
and password as password.

You will need a table by the name acled to exist in the configured Accumulo instance. If you 
have an existing table by that name from an earlier recipe, delete, and recreate it.

It is also highly recommended that you go through the Using MapReduce to bulk import 
geographic event data into Accumulo recipe earlier in this chapter. This will give you some 
sample data to experiment with.
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How to do it...
The following are the steps to read/write data to Accumulo using cell visibility controls:

1. Open the Java IDE of your choice. You will need to configure the Accumulo core and 
Hadoop classpath dependencies.

2. Create a build template that produces a JAR file named accumulo-examples.jar.

3. Create the package example.accumulo and add the class SecurityScanMain.
java with the following content:
package examples.accumulo;

import org.apache.accumulo.core.client.*;
import org.apache.accumulo.core.data.Key;
import org.apache.accumulo.core.data.Mutation;
import org.apache.accumulo.core.data.Value;
import org.apache.accumulo.core.security.Authorizations;
import org.apache.accumulo.core.security.ColumnVisibility;
import org.apache.hadoop.io.Text;

import java.util.Map;

public class SecurityScanMain {

    public static final long MAX_MEMORY= 10000L;
    public static final long MAX_LATENCY=1000L;
    public static final int MAX_WRITE_THREADS = 4;
    public static final String TEST_TABLE = "acled";
    public static final Text COLUMN_FAMILY = new Text("cf");
    public static final Text THREAT_QUAL = new 
                                           Text("trt_lvl");

    public static void main(String[] args)throws Exception {
        if(args.length < 4) {
            System.err.println("usage: <instance name>  <user> 
<password> <zookeepers>");
            System.exit(0);
        }
        String instanceName = args[0];
        String user = args[1];
        String pass = args[2];
        String zooQuorum = args[3];
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4. Create a Connector instance for our user or pass variable to the test  
Accumulo instance.
        ZooKeeperInstance ins = new 
                ZooKeeperInstance(instanceName, zooQuorum);
        Connector connector = ins.getConnector(user, pass);
        if(!connector.tableOperations().exists(TEST_TABLE))
           connector.tableOperations().create(TEST_TABLE);

5. Get the root user's current authorizations.
        Authorizations allowedAuths = 
connector.securityOperations().getUserAuthorizations(user);
        BatchWriter writer = 
connector.createBatchWriter(TEST_TABLE, MAX_MEMORY, 
                            MAX_LATENCY, MAX_WRITE_THREADS);

6. Write the test mutations.
        Mutation m1 = new Mutation(new Text("eventA"));
        m1.put(COLUMN_FAMILY,
                THREAT_QUAL,
                new ColumnVisibility("(p1|p2|p3)"),
                new Value("moderate".getBytes()));
        Mutation m2 = new Mutation(new Text("eventB"));
        m2.put(COLUMN_FAMILY,
                THREAT_QUAL,
                new ColumnVisibility("(p4|p5)"),
                new Value("severe".getBytes()));
        writer.addMutation(m1);
        writer.addMutation(m2);
        writer.close();

7. Create a scanner with our user's authorizations, and fetch any key-value pairs  
where the key contains the qualifier threat.
        Scanner scanner = connector.createScanner(TEST_TABLE, 
allowedAuths);
        scanner.fetchColumn(COLUMN_FAMILY, THREAT_QUAL);
        boolean found = false;
        for(Map.Entry<Key, Value> item: scanner) {
            System.out.println("Scan found: " + item.getKey().
getRow().toString() + " threat level: " + item.getValue().
toString());
            found = true;
        }
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8. If this condition matches, our user is not authorized to see any event threats.
        if(!found)
            System.out.println("No threat levels are visible with 
your current user auths: " + allowedAuths.serialize());
    }
}

9. Save and build the JAR file accumulo-examples.jar.

10. In the base working folder where accumulo-examples.jar is located, create 
a new shell script named run_security_auth_scan.sh with the following 
commands. Be sure to change ACCUMULO-LIB, HADOOP_LIB, and ZOOKEEPER_LIB 
to match your local paths.
ACCUMULO_LIB=/opt/cloud/accumulo-1.4.1/lib/*

HADOOP_LIB=/Applications/hadoop-0.20.2-cdh3u1/*:/Applications/
hadoop-0.20.2-cdh3u1/lib/*

ZOOKEEPER_LIB=/opt/cloud/zookeeper-3.4.2/*

java -cp $ACCUMULO_LIB:$HADOOP_LIB:$ZOOKEEPER_LIB:accumulo-
examples.jar examples.accumulo.SecurityScanMain\

 test\

 root\

 password\

 localhost:2181

11. Save and run the script.

12. You should see the following output in the console:
no threat levels are visible with your current user auths:

13. Launch the Accumulo shell.
accumulo shell –u root –p password

14. Run the setauths command to see a list of options.
$ root@test> setauths

15. Run the following command:
$ root@test> setauths –s p1

16. Re-run the script run_security_auth_scan.sh.

17. You should see the following output in the console:
Scan found: eventA threat level: moderate
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18. Re-enter the Accumulo shell and run the following command:
$ root@test> setauths -s p1,p4

19. Re-run the script run_security_auth_scan.sh.

20. You should see the following output in the console:

Scan found: eventA threat level: moderate

Scan found: eventB threat level: severe

How it works...
The class SecurityScanMain reads the required arguments to connect to Accumulo and 
instantiates a BatchWriter instance to write out test data to the acled table. We write 
two mutations to the table. The first is for rowID eventA and the column visibility expression 
(p1|p2|p3). The second is for rowID eventB and the column visibility (p4|p5). The column 
visibility expressions are very simple Boolean expressions. Before a scan can occur over an 
Accumulo table, the client must supply authorization tokens for the connected user. Accumulo 
will compare the given tokens against the column visibility label on each key to determine 
visibility for that user over the given key/value. The expression (p1|p2|p3) implies that a 
scanner reading the key must present an Authorizations object that supplies p1, p2, 
or p3. By default, the root user does not have any scanning authorization tokens. The call 
to the getUserAuthorizations(user) method on the connector currently returns no 
authorization tokens. To view eventA, we need to present p1, p2, or p3; none of which are 
currently listed for the root user. To view eventB, we need to present p4 or p5; which the root 
user also does not have. Once we go into the shell and add p1 for the root user, our scan will 
present the authorization p1 and find a successful Boolean match to eventA. Once we set 
the scan tokens for the root user to p1,p4, we can view both eventA and eventB.

There's more...
Cell visibility is a feature with more complexity than you might think. Here are some things to 
know about cell security in Accumulo:

Writing mutations for unauthorized scanning
Authorization tokens restrict what users can see during scans, but not what column visibility 
expressions they can write on mutations.

This is the default behavior and, for many systems, is undesirable. If you would like to enforce 
this policy in your Accumulo installation, you can add the Constraint class implementation 
org.apache.accumulo.core.security.VisibilityConstraint as a system-wide 
constraint. Once applied to the Accumulo installation, users will be barred from writing 
mutations containing column visibility labels they themselves are not authorized to read.
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ColumnVisibility is part of the key
Different keys containing the exact same rowID, column-family, and qualifier may have 
different ColumnVisibility labels. If the most recent timestamped version of a key 
contains a ColumnVisibility key that is not viewable by the current scan, the user will  
see the next oldest version of that key for which a column visibility token matches, or none  
if they are not authorized to see any of the versions.

The normal scanning logic for key/value presentation has the scanner returning the most 
recent version of a given key. The cell visibility system adjusts that logic with one additional 
condition. The scanner will return the most recently timestamped version of a given key that 
matches the supplied authorization tokens.

Supporting more complex Boolean expressions
This recipe shows two very simple disjunction examples of the ColumnVisibilty Boolean 
expression. You can apply more complicated expressions, should your application require 
them. For example, (((A & B)|C) & D) would match for authorizations that supplied the  
label D and either label C or labels A and B.

See also
 f Using MapReduce to bulk import geographic event data into Accumulo
 f Setting a custom field constraint for inputing geographic event data in Accumulo

Aggregating sources in Accumulo using 
MapReduce

In this recipe, we will use MapReduce and the AccumuloInputFormat class to count 
occurrences of each unique source stored in an Accumulo table.

Getting ready
This recipe will be the easiest to test over a pseudo-distributed Hadoop cluster with Accumulo 
1.4.1 and Zookeeper 3.3.3 installed. The shell script in this recipe assumes that Zookeeper 
is running on the host localhost and on the port 2181; you can change this to suit your 
environment needs. The Accumulo installation's bin folder needs to be on your environment path.

For this recipe you'll need to create an Accumulo instance named test with user as root 
and password as password.

You will need a table by the name acled to exist in the configured Accumulo instance.

To see the filtered results from this recipe, you will need to go through the Using MapReduce 
to bulk import geographic event data into Accumulo recipe seen earlier in this chapter. This 
will give you some sample data to experiment with.
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How to do it...
The following are the steps to count occurrences of different sources using MapReduce:

1. Open the Java IDE of your choice. You will need to configure the Accumulo core and 
Hadoop classpath dependencies.

2. Create a build template that produces a JAR file named accumulo-examples.jar.

3. Create the package example.accumulo and add the class SourceCountJob.
java with the following content:
package examples.accumulo;

import org.apache.accumulo.core.client.mapreduce.
AccumuloInputFormat;
import org.apache.accumulo.core.data.Key;
import org.apache.accumulo.core.data.Value;
import org.apache.accumulo.core.security.Authorizations;
import org.apache.accumulo.core.util.CachedConfiguration;
import org.apache.accumulo.core.util.Pair;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.io.IOException;
import java.lang.Override;
import java.util.HashSet;
public class SourceCountJob extends Configured implements Tool {

    private Configuration conf;
    private static final Text FAMILY = new Text("cf");
    private static final Text SOURCE = new Text("src");

    public SourceCountJob(Configuration conf) {
        this.conf = conf;
    }
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4. Add the run() method to conform to the Tool interface and parse the arguments 
from the command line.
    @Override
    public int run(String[] args) throws Exception {

        args = new GenericOptionsParser(conf, 
               args).getRemainingArgs();
        if(args.length < 6) {
            System.err.println(printUsage());
            System.exit(0);
        }

        String tableName = args[0];
        String outputStr = args[1];
        String instanceName = args[2];
        String user = args[3];
        String pass = args[4];
        String zooQuorum = args[5];

5. Configure the Accumulo input settings.
        AccumuloInputFormat.setInputInfo(conf, user, pass.
getBytes(), tableName, new Authorizations());
        AccumuloInputFormat.setZooKeeperInstance(conf, 
instanceName, zooQuorum);
        HashSet<Pair<Text, Text>> columnsToFetch = new 
HashSet<Pair<Text,Text>>();
        columnsToFetch.add(new Pair<Text, Text>(FAMILY, SOURCE));
        AccumuloInputFormat.fetchColumns(conf, columnsToFetch);

6. Set up the job, map/reduce classes, and the output location.
        Job job = new Job(conf, "Count distinct sources in 
                                 ACLED");
        job.setInputFormatClass(AccumuloInputFormat.class);
        job.setMapperClass(ACLEDSourceMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        job.setReducerClass(ACLEDSourceReducer.class);
        job.setCombinerClass(ACLEDSourceReducer.class);
        job.setJarByClass(getClass());
        job.setOutputFormatClass(TextOutputFormat.class);
        FileOutputFormat.setOutputPath(job, 
                               clearOutputDir(outputStr));
        job.setNumReduceTasks(1);
        return job.waitForCompletion(true) ? 0 : 1;

    }
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    private String printUsage() {
        return "<tablename> <output> <instance_name> 
                <username> <password> <zoohosts>";
    }

    private Path clearOutputDir(String outputStr)
            throws IOException {
        FileSystem fs = FileSystem.get(conf);
        Path path = new Path(outputStr);
        fs.delete(path, true);
        return path;
    }

7. Add the static inner class ACLEDSourceMapper.
    public static class ACLEDSourceMapper
            extends Mapper<Key, Value, Text, IntWritable> {

        private Text outKey = new Text();
        private IntWritable outValue = new IntWritable(1);

        @Override
        protected void map(Key key, Value value,
                           Context context) throws IOException, 
InterruptedException {

            outKey.set(value.get());
            context.write(outKey, outValue);
        }
    }

8. Add the static inner class ACLEDSourceReducer.
    public static class ACLEDSourceReducer
            extends Reducer<Text, IntWritable, Text, 
                            IntWritable> {

        private IntWritable outValue = new IntWritable();

        @Override
        protected void reduce(Text key, 
                              Iterable<IntWritable> values,
                              Context context) throws 
                        IOException, InterruptedException {

          int count = 0;
          for(IntWritable value : values) {
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              count += value.get();
          }
          outValue.set(count);
          context.write(key, outValue);
        }
    }

    @Override
    public void setConf(Configuration conf) {
        this.conf = conf;
    }

    @Override
    public Configuration getConf() {
        return conf;
    }

9. Define a main() method to submit the job as a Tool instance.
    public static void main(String[] args) throws Exception {
        Configuration conf = 
                        CachedConfiguration.getInstance();
        args = new GenericOptionsParser(conf, 
                                 args).getRemainingArgs();
        ToolRunner.run(new SourceCountJob(conf), args);
    }
}

10. Save and build the JAR file accumulo-examples.jar.

11. In the base working folder where accumulo-examples.jar is located, 
create a new shell script named source_count.sh with the following commands. 
Be sure to change ACCUMULO-LIB, HADOOP_LIB, and ZOOKEEPER_LIB to match 
your local paths:
tool.sh accumulo_examples.jar examples.accumulo.SourceCountJob\

 -Dmapred.reduce.tasks=4\

 acled\

 /output/accumulo_source_count/\

 test\

 root\

 password\

 localhost:2181

hadoop fs -cat /output/accumulo_source_count/part* > source_count.
txt



Persistence Using Apache Accumulo

288

12. Save and run the script. You should see the MapReduce job start executing over your 
pseudo-distributed cluster.

13. Upon successful completion of the job, you should see the file source_count.txt 
in your base working folder. Type in the cat command to see the counts for  
each source.

How it works...
We define the SourceCountJob class to implement the Tool interface for ease of remote 
submission with the ToolRunner class. The CachedConfiguration.getInstance() 
static method sends our Tool instance the correct Accumulo configuration on the classpath.

The run() method parses the arguments necessary to connect to the Accumulo instance 
using AccumuloInputFormat. For this job we're only interested in retrieving the column 
qualifier src from the column family cf for each key. By default, the scanner will only return 
the most recent versions of each key containing the qualifier src. If we wanted to count 
source occurrences across every key-value pair in the table for every version, we would have 
to configure maxVersions in the input format.

We then set up our job instance with the AccumuloInputFormat and map/reduce classes 
required to count each source. As our reducer class is simply adding integers together, we can 
re-use the sample implementation for a combiner. We clear any existing output folders and set 
the number of reduce tasks to 1 as we are running a pseudo-distributed cluster. Now we are 
ready to submit the job to the cluster.

The business logic operates in a very similar manner to the traditional WordCount example.

The AccumuloInputFormat class handles scanning and returning of only key-value pairs 
for the qualifier src. Therefore, any key/value instances that enter our ACLEDSourceMapper 
class's map() function are already restricted to the data we're interested in aggregating, and 
we can simply output 1 to represent one occurrence of that source value in our dataset. The 
output key is simply the value of the incoming source.

The reduce class ACLEDSourceReducer simply tallies occurrences for each source, and 
outputs the results back to HDFS.

At the end of the shell script, we download and concatenate the different part files together 
into one file, source_counts.txt. We now have one single file with newline-separated 
source listings and the total number of occurrences for each source.



Index
Symbols
$HADOOP_BIN  8
$SQOOP_HOME  23
-a arguments  205
--as-avrodatafile argument  20
--as-sequencefile argument  20
@BeforeClass annotation  249
--clear-staging-table argument  24
--clustering parameter  205
--clusters parameter  205
-conf argument/flag  244
--connect statement  23
-D argument/flag  244
-e option  109, 179
-file location_regains_by_time.py \  

argument  91
-file location_regains_mapper.py \  

argument  91
-fs argument/flag  244
-ignorecrc argument  12
--input arguments  204
--input parameter  205
-jobconf mapred.reduce.tasks=1  

argument  91
-jobconf num.key.fields.for.partition=1 \  

argument  91
-jobconf stream.num.map.output.key.fields=2 

\ argument  91
-jt argument/flag  244
-mapper location_regains_mapper.py \  

argument  91
-m argument  20
--maxIter parameter  205
-md arguments  205
-ml arguments  205

--namedVector arguments  204
-ng arguments  205
--numClusters parameter  205
--output arguments  204
-output /output/acled_analytic_out \  

argument  91
--output parameter  205
--overwrite parameter  205
--password option  23
-reducer location_regains_by_time.py \  

argument  91
-s arguments  205
-s option  179
--split-by argument  20
--staging-table argument  24
--table argument  19, 23
--update-key value  24
--username option  23
-usersFile flag  202
-v option  179
-w option  179
-wt arguments  205
-x arguments  205

A
Accumulator interface  76
Accumulo

custom field constraint setting, to input  
geographic event data  264-269

geographic event data bulk importing,  
MapReduce used  256-263

row key designing, to store geographic  
events  246,-254

sources aggregating, MapReduce  
used  283-288

SumCombiner, using  273-277



290

used for enforcing cell-level security,  
on scans  278-282

AccumuloFileOutputFormat
versus AccumuloOutputFormat  264

AccumuloInputFormat class  288
AccumuloOutputFormat

versus AccumuloFileOutputFormat  264
AccumuloTableAssistant.java  263
ACLED  246-254
ACLEDIngestReducer.java class  260
ACLEDSourceReducer static inner class  286
addCacheArchive() static method  131
Apache Avro

using, to serialize data  50-53
apache_clf.txt dataset  66
Apache Giraph

-e option  179
-s option  179
-v option  179
-w option  179
about  177
community  180
PageRank with  178, 179
scalability tuning  199
single-source shortest-path  180-182
using, to perform distributed breadth-first 

search  192-199
Apache Hive

map-side join, using  138-140
optimized full outer joins, using  141-143

Apache logs
transforming into TSV format, MapReduce 

used  66-68
Apache Mahout

about  177
clustering with  203, 204
collaborative filtering with  200, 202
sentiment classification  206-208

Apache Mahout 0.6
URL  200

Apache Pig
about  69, 217
functionality extending, Python used  77, 78
merge join, used for joining data  134, 135
record with malformed IP address,  

example  224, 225

replicated join, used for joining  
data  132, 133

SELECT operation, performing with  
GROUP BY operation  125, 126

skewed join, used for joining skewed  
data  136, 137

used, for sorting data  73
used for sorting web server log data,  

by timestamp  72, 73
using, to load table  125, 126
using to sort web server log data,  

by timestamp  72, 73
using, to view sessionize web server  

log data  74-76
Apache Pig 0.10

URL, for installing  224
Apache Thrift

about  54
using, to serialize data  54-57

Armed Conflict Location Event Data. See  
ACLED

associative  154
Audioscrobbler dataset

about  171
outliers trimming, Datafu used  174
URL, for downloading  171, 174

AvroWrapper class  53
AvroWriter job  53
AvroWriter MapReduce job  52

B
bad records

skipping, by enabling MapReduce  
jobs  217-219

Before annotation  213
block compression option  49
block replication  39
block size

setting, for HDFS  64
Boolean expressions  283
Bot traffic

about  69
filtering, Apache Pig UDF used  69

BreadtFirstTextOutputFormat class  196
BSON object  33
Builder pattern  262, 263



291

Bulk Synchronous Parallel (BSP)
about  178
URL  180

bzip2  43

C
CachedConfiguration.getInstance()  

static method  288
coalesce() method  160
CDH3

about  17
URL  25, 33

cell-level security
enforcing on scans, Accumulo  

used  278, -282
cleanAndValidatePoint() private method  248
cluster

data moving between, distributed copy  
used  15-18

monitoring, Ganglia used  239-241
new nodes, adding  234, 235

CLUSTER BY  170
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about  269
building  270
installing, on TabletServer  270

context class  211
copyFromLocal command  12
copyToLocal command  12, 13
copyToLocal Hadoop shell command  11

Cosine similarity
about  171
calculating, Pig used  171-173

counters
about  210
using in MapReduce job, to track bad records  

210-212
using, in streaming job  220

CREATE command  107
create() method  42
createRecordReader() method  104
current_diff  169
current_loc  169
Cyclic Redundancy Check (CRC)  12

D
data

compressing, LZO used  42-45
exporting from MySQL into HDFS, Sqoop  

used  21-24
importing from MySQL into HDFS, Sqoop  

used  16-20
joining, Apache Pig replicated join  

used  132, 133
joining in mapper, MapReduce  

used  128-131
moving between clusters, distributed  

copy used  15, 16
sorting, Apache Pig used  73

dataflow programs
example data generating, URL for  225

Datafu
about  174
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