

Hadoop Real-World
Solutions Cookbook

Realistic, simple code examples to solve problems at
scale with Hadoop and related technologies

Jonathan R. Owens
Jon Lentz
Brian Femiano

 BIRMINGHAM - MUMBAI

Hadoop Real-World Solutions Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2013

Production Reference: 1280113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-912-0

www.packtpub.com

Cover Image by iStockPhoto

Credits

Authors
Jonathan R. Owens

Jon Lentz

Brian Femiano

Reviewers
Edward J. Cody

Daniel Jue

Bruce C. Miller

Acquisition Editor
Robin de Jongh

Lead Technical Editor
Azharuddin Sheikh

Technical Editor
Dennis John

Copy Editors
Brandt D'Mello

Insiya Morbiwala

Aditya Nair

Alfida Paiva

Ruta Waghmare

Project Coordinator
Abhishek Kori

Proofreader
Stephen Silk

Indexer
Monica Ajmera Mehta

Graphics
Conidon Miranda

Layout Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Authors

Jonathan R. Owens has a background in Java and C++, and has worked in both private
and public sectors as a software engineer. Most recently, he has been working with Hadoop
and related distributed processing technologies.

Currently, he works for comScore, Inc., a widely regarded digital measurement and analytics
company. At comScore, he is a member of the core processing team, which uses Hadoop
and other custom distributed systems to aggregate, analyze, and manage over 40 billion
transactions per day.

I would like to thank my parents James and Patricia Owens, for their support
and introducing me to technology at a young age.

Jon Lentz is a Software Engineer on the core processing team at comScore, Inc., an online
audience measurement and analytics company. He prefers to do most of his coding in Pig.
Before working at comScore, he developed software to optimize supply chains and allocate
fixed-income securities.

To my daughter, Emma, born during the writing of this book. Thanks for the
company on late nights.

Brian Femiano has a B.S. in Computer Science and has been programming professionally
for over 6 years, the last two of which have been spent building advanced analytics and Big
Data capabilities using Apache Hadoop. He has worked for the commercial sector in the past,
but the majority of his experience comes from the government contracting space. He currently
works for Potomac Fusion in the DC/Virginia area, where they develop scalable algorithms
to study and enhance some of the most advanced and complex datasets in the government
space. Within Potomac Fusion, he has taught courses and conducted training sessions to
help teach Apache Hadoop and related cloud-scale technologies.

I'd like to thank my co-authors for their patience and hard work building the
code you see in this book. Also, my various colleagues at Potomac Fusion,
whose talent and passion for building cutting-edge capability and promoting
knowledge transfer have inspired me.

About the Reviewers

Edward J. Cody is an author, speaker, and industry expert in data warehousing, Oracle
Business Intelligence, and Hyperion EPM implementations. He is the author and co-author
respectively of two books with Packt Publishing, titled The Business Analyst's Guide to Oracle
Hyperion Interactive Reporting 11 and The Oracle Hyperion Interactive Reporting 11 Expert
Guide. He has consulted to both commercial and federal government clients throughout his
career, and is currently managing large-scale EPM, BI, and data warehouse implementations.

I would like to commend the authors of this book for a job well done, and
would like to thank Packt Publishing for the opportunity to assist in the
editing of this publication.

Daniel Jue is a Sr. Software Engineer at Sotera Defense Solutions and a member of the
Apache Software Foundation. He has worked in peace and conflict zones to showcase the
hidden dynamics and anomalies in the underlying "Big Data", with clients such as ACSIM,
DARPA, and various federal agencies. Daniel holds a B.S. in Computer Science from the
University of Maryland, College Park, where he also specialized in Physics and Astronomy.
His current interests include merging distributed artificial intelligence techniques with
adaptive heterogeneous cloud computing.

I'd like to thank my beautiful wife Wendy, and my twin sons Christopher
and Jonathan, for their love and patience while I research and review. I
owe a great deal to Brian Femiano, Bruce Miller, and Jonathan Larson
for allowing me to be exposed to many great ideas, points of view, and
zealous inspiration.

Bruce Miller is a Senior Software Engineer for Sotera Defense Solutions, currently
employed at DARPA, with most of his 10-year career focused on Big Data software
development. His non-work interests include functional programming in languages
like Haskell and Lisp dialects, and their application to real-world problems.

www.packtpub.com

Support files, eBooks, discount offers and more
You might want to visit www.packtpub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.packtpub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://packtLib.packtPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.packtpub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Hadoop Distributed File System – Importing
and Exporting Data 7

Introduction 8
Importing and exporting data into HDFS using Hadoop shell commands 8
Moving data efficiently between clusters using Distributed Copy 15
Importing data from MySQL into HDFS using Sqoop 16
Exporting data from HDFS into MySQL using Sqoop 21
Configuring Sqoop for Microsoft SQL Server 25
Exporting data from HDFS into MongoDB 26
Importing data from MongoDB into HDFS 30
Exporting data from HDFS into MongoDB using Pig 33
Using HDFS in a Greenplum external table 35
Using Flume to load data into HDFS 37

Chapter 2: HDFS 39
Introduction 39
Reading and writing data to HDFS 40
Compressing data using LZO 42
Reading and writing data to SequenceFiles 46
Using Apache Avro to serialize data 50
Using Apache Thrift to serialize data 54
Using Protocol Buffers to serialize data 58
Setting the replication factor for HDFS 63
Setting the block size for HDFS 64

ii

Table of Contents

Chapter 3: Extracting and Transforming Data 65
Introduction 65
Transforming Apache logs into TSV format using MapReduce 66
Using Apache Pig to filter bot traffic from web server logs 69
Using Apache Pig to sort web server log data by timestamp 72
Using Apache Pig to sessionize web server log data 74
Using Python to extend Apache Pig functionality 77
Using MapReduce and secondary sort to calculate page views 78
Using Hive and Python to clean and transform geographical event data 84
Using Python and Hadoop Streaming to perform a time series analytic 89
Using MultipleOutputs in MapReduce to name output files 94
Creating custom Hadoop Writable and InputFormat to read
geographical event data 98

Chapter 4: Performing Common Tasks Using Hive, Pig,
and MapReduce 105

Introduction 105
Using Hive to map an external table over weblog data in HDFS 106
Using Hive to dynamically create tables from the results of a weblog query 108
Using the Hive string UDFs to concatenate fields in weblog data 110
Using Hive to intersect weblog IPs and determine the country 113
Generating n-grams over news archives using MapReduce 115
Using the distributed cache in MapReduce
to find lines that contain matching keywords over news archives 120
Using Pig to load a table and perform a SELECT operation with GROUP BY 125

Chapter 5: Advanced Joins 127
Introduction 127
Joining data in the Mapper using MapReduce 128
Joining data using Apache Pig replicated join 132
Joining sorted data using Apache Pig merge join 134
Joining skewed data using Apache Pig skewed join 136
Using a map-side join in Apache Hive to analyze geographical events 138
Using optimized full outer joins in Apache Hive to analyze
geographical events 141
Joining data using an external key-value store (Redis) 144

Chapter 6: Big Data Analysis 149
Introduction 149
Counting distinct IPs in weblog data using MapReduce and Combiners 150
Using Hive date UDFs to transform and sort event dates from
geographic event data 156

iii

Table of Contents

Using Hive to build a per-month report of fatalities over
geographic event data 159
Implementing a custom UDF in Hive to help validate source reliability
over geographic event data 161
Marking the longest period of non-violence using Hive
MAP/REDUCE operators and Python 165
Calculating the cosine similarity of artists in the Audioscrobbler
dataset using Pig 171
Trim Outliers from the Audioscrobbler dataset using Pig and datafu 174

Chapter 7: Advanced Big Data Analysis 177
Introduction 177
PageRank with Apache Giraph 178
Single-source shortest-path with Apache Giraph 180
Using Apache Giraph to perform a distributed breadth-first search 192
Collaborative filtering with Apache Mahout 200
Clustering with Apache Mahout 203
Sentiment classification with Apache Mahout 206

Chapter 8: Debugging 209
Introduction 209
Using Counters in a MapReduce job to track bad records 210
Developing and testing MapReduce jobs with MRUnit 212
Developing and testing MapReduce jobs running in local mode 215
Enabling MapReduce jobs to skip bad records 217
Using Counters in a streaming job 220
Updating task status messages to display debugging information 222
Using illustrate to debug Pig jobs 224

Chapter 9: System Administration 227
Introduction 227
Starting Hadoop in pseudo-distributed mode 227
Starting Hadoop in distributed mode 231
Adding new nodes to an existing cluster 234
Safely decommissioning nodes 236
Recovering from a NameNode failure 237
Monitoring cluster health using Ganglia 239
Tuning MapReduce job parameters 241

Chapter 10: Persistence Using Apache Accumulo 245
Introduction 245
Designing a row key to store geographic events in Accumulo 246
Using MapReduce to bulk import geographic event data into Accumulo 256

iv

Table of Contents

Setting a custom field constraint for inputting geographic event
data in Accumulo 264
Limiting query results using the regex filtering iterator 270
Counting fatalities for different versions of the same key
using SumCombiner 273
Enforcing cell-level security on scans using Accumulo 278
Aggregating sources in Accumulo using MapReduce 283

Index 289

Preface
Hadoop Real-World Solutions Cookbook helps developers become more comfortable with,
and proficient at solving problems in, the Hadoop space. Readers will become more familiar
with a wide variety of Hadoop-related tools and best practices for implementation.

This book will teach readers how to build solutions using tools such as Apache Hive, Pig,
MapReduce, Mahout, Giraph, HDFS, Accumulo, Redis, and Ganglia.

This book provides in-depth explanations and code examples. Each chapter contains a set
of recipes that pose, and then solve, technical challenges and that can be completed in
any order. A recipe breaks a single problem down into discrete steps that are easy to follow.
This book covers unloading/loading to and from HDFS, graph analytics with Giraph, batch
data analysis using Hive, Pig, and MapReduce, machine-learning approaches with Mahout,
debugging and troubleshooting MapReduce jobs, and columnar storage and retrieval of
structured data using Apache Accumulo.

This book will give readers the examples they need to apply the Hadoop technology to their
own problems.

What this book covers
Chapter 1, Hadoop Distributed File System – Importing and Exporting Data, shows several
approaches for loading and unloading data from several popular databases that include
MySQL, MongoDB, Greenplum, and MS SQL Server, among others, with the aid of tools
such as Pig, Flume, and Sqoop.

Chapter 2, HDFS, includes recipes for reading and writing data to/from HDFS. It shows
how to use different serialization libraries, including Avro, Thrift, and Protocol Buffers.
Also covered is how to set the block size and replication, and enable LZO compression.

Chapter 3, Extracting and Transforming Data, includes recipes that show basic Hadoop
ETL over several different types of data sources. Different tools, including Hive, Pig, and
the Java MapReduce API, are used to batch-process data samples and produce one or
more transformed outputs.

Preface

2

Chapter 4, Performing Common Tasks Using Hive, Pig, and MapReduce, focuses on how
to leverage certain functionality in these tools to quickly tackle many different classes of
problems. This includes string concatenation, external table mapping, simple table joins,
custom functions, and dependency distribution across the cluster.

Chapter 5, Advanced Joins, contains recipes that demonstrate more complex and useful
join techniques in MapReduce, Hive, and Pig. These recipes show merged, replicated, and
skewed joins in Pig as well as Hive map-side and full outer joins. There is also a recipe that
shows how to use Redis to join data from an external data store.

Chapter 6, Big Data Analysis, contains recipes designed to show how you can put Hadoop
to use to answer different questions about your data. Several of the Hive examples will
demonstrate how to properly implement and use a custom function (UDF) for reuse
in different analytics. There are two Pig recipes that show different analytics with the
Audioscrobbler dataset and one MapReduce Java API recipe that shows Combiners.

Chapter 7, Advanced Big Data Analysis, shows recipes in Apache Giraph and Mahout
that tackle different types of graph analytics and machine-learning challenges.

Chapter 8, Debugging, includes recipes designed to aid in the troubleshooting and testing
of MapReduce jobs. There are examples that use MRUnit and local mode for ease of testing.
There are also recipes that emphasize the importance of using counters and updating task
status to help monitor the MapReduce job.

Chapter 9, System Administration, focuses mainly on how to performance-tune and optimize
the different settings available in Hadoop. Several different topics are covered, including basic
setup, XML configuration tuning, troubleshooting bad data nodes, handling NameNode failure,
and performance monitoring using Ganglia.

Chapter 10, Persistence Using Apache Accumulo, contains recipes that show off many of
the unique features and capabilities that come with using the NoSQL datastore Apache
Accumulo. The recipes leverage many of its unique features, including iterators, combiners,
scan authorizations, and constraints. There are also examples for building an efficient
geospatial row key and performing batch analysis using MapReduce.

What you need for this book
Readers will need access to a pseudo-distributed (single machine) or fully-distributed
(multi-machine) cluster to execute the code in this book. The various tools that the recipes
leverage need to be installed and properly configured on the cluster. Moreover, the code
recipes throughout this book are written in different languages; therefore, it’s best if
readers have access to a machine with development tools they are comfortable using.

Preface

3

Who this book is for
This book uses concise code examples to highlight different types of real-world problems you
can solve with Hadoop. It is designed for developers with varying levels of comfort using Hadoop
and related tools. Hadoop beginners can use the recipes to accelerate the learning curve and
see real-world examples of Hadoop application. For more experienced Hadoop developers,
many of the tools and techniques might expose them to new ways of thinking or help clarify a
framework they had heard of but the value of which they had not really understood.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: “All of the Hadoop filesystem shell commands take
the general form hadoop fs –COMMAND.”

A block of code is set as follows:

weblogs = load ‘/data/weblogs/weblog_entries.txt’ as
 (md5:chararray,
 url:chararray,
 date:chararray,
 time:chararray,
 ip:chararray);

md5_grp = group weblogs by md5 parallel 4;

store md5_grp into ‘/data/weblogs/weblogs_md5_groups.bcp’;

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

weblogs = load ‘/data/weblogs/weblog_entries.txt’ as
 (md5:chararray,
 url:chararray,
 date:chararray,
 time:chararray,
 ip:chararray);

md5_grp = group weblogs by md5 parallel 4;

store md5_grp into ‘/data/weblogs/weblogs_md5_groups.bcp’;

Preface

4

Any command-line input or output is written as follows:

hadoop distcp –m 10 hdfs://namenodeA/data/weblogs hdfs://namenodeB/data/
weblogs

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “To build the JAR file, download
the Jython java installer, run the installer, and select Standalone from the installation menu”.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Hadoop Distributed File
System – Importing and

Exporting Data

In this chapter we will cover:

 f Importing and exporting data into HDFS using the Hadoop shell commands

 f Moving data efficiently between clusters using Distributed Copy

 f Importing data from MySQL into HDFS using Sqoop

 f Exporting data from HDFS into MySQL using Sqoop

 f Configuring Sqoop for Microsoft SQL Server

 f Exporting data from HDFS into MongoDB

 f Importing data from MongoDB into HDFS

 f Exporting data from HDFS into MongoDB using Pig

 f Using HDFS in a Greenplum external table

 f Using Flume to load data into HDFS

Hadoop Distributed File System – Importing and Exporting Data

8

Introduction
In a typical installation, Hadoop is the heart of a complex flow of data. Data is often collected
from many disparate systems. This data is then imported into the Hadoop Distributed File
System (HDFS). Next, some form of processing takes place using MapReduce or one of the
several languages built on top of MapReduce (Hive, Pig, Cascading, and so on). Finally, the
filtered, transformed, and aggregated results are exported to one or more external systems.

For a more concrete example, a large website may want to produce basic analytical data
about its hits. Weblog data from several servers is collected and pushed into HDFS. A
MapReduce job is started, which runs using the weblogs as its input. The weblog data
is parsed, summarized, and combined with the IP address geolocation data. The output
produced shows the URL, page views, and location data by each cookie. This report is
exported into a relational database. Ad hoc queries can now be run against this data.
Analysts can quickly produce reports of total unique cookies present, pages with the
most views, breakdowns of visitors by region, or any other rollup of this data.

The recipes in this chapter will focus on the process of importing and exporting data to and
from HDFS. The sources and destinations include the local filesystem, relational databases,
NoSQL databases, distributed databases, and other Hadoop clusters.

Importing and exporting data into HDFS
using Hadoop shell commands

HDFS provides shell command access to much of its functionality. These commands are
built on top of the HDFS FileSystem API. Hadoop comes with a shell script that drives all
interaction from the command line. This shell script is named hadoop and is usually located
in $HADOOP_BIN, where $HADOOP_BIN is the full path to the Hadoop binary folder. For
convenience, $HADOOP_BIN should be set in your $PATH environment variable. All of the
Hadoop filesystem shell commands take the general form hadoop fs -COMMAND.

To get a full listing of the filesystem commands, run the hadoop shell script passing it the fs
option with no commands.

hadoop fs

Chapter 1

9

These command names along with their functionality closely resemble Unix shell commands.
To get more information about a particular command, use the help option.

hadoop fs –help ls

The shell commands and brief descriptions can also be found online in the official
documentation located at http://hadoop.apache.org/common/docs/r0.20.2/hdfs_
shell.html

In this recipe, we will be using Hadoop shell commands to import data into HDFS and export
data from HDFS. These commands are often used to load ad hoc data, download processed
data, maintain the filesystem, and view the contents of folders. Knowing these commands is
a requirement for efficiently working with HDFS.

http://hadoop.apache.org/common/docs/r0.20.2/hdfs_shell.html

Hadoop Distributed File System – Importing and Exporting Data

10

Getting ready
You will need to download the weblog_entries.txt dataset from the Packt website
http://www.packtpub.com/support.

How to do it...
Complete the following steps to create a new folder in HDFS and copy the weblog_entries.
txt file from the local filesystem to HDFS:

1. Create a new folder in HDFS to store the weblog_entries.txt file:
hadoop fs –mkdir /data/weblogs

2. Copy the weblog_entries.txt file from the local filesystem into the new folder
created in HDFS:
hadoop fs –copyFromLocal weblog_entries.txt /data/weblogs

3. List the information in the weblog_entires.txt file:
hadoop fs –ls /data/weblogs/weblog_entries.txt

The result of a job run in Hadoop may be used by an external system,
may require further processing in a legacy system, or the processing
requirements might not fit the MapReduce paradigm. Any one of these
situations will require data to be exported from HDFS. One of the simplest
ways to download data from HDFS is to use the Hadoop shell.

4. The following code will copy the weblog_entries.txt file from HDFS to the local
filesystem's current folder:

hadoop fs –copyToLocal /data/weblogs/weblog_entries.txt ./weblog_
entries.txt

Chapter 1

11

When copying a file from HDFS to the local filesystem, keep in mind the space available on
the local filesystem and the network connection speed. It's not uncommon for HDFS to have
file sizes in the range of terabytes or even tens of terabytes. In the best case scenario, a ten
terabyte file would take almost 23 hours to be copied from HDFS to the local filesystem over
a 1-gigabit connection, and that is if the space is available!

Downloading the example code for this book
You can download the example code files for all the Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

How it works...
The Hadoop shell commands are a convenient wrapper around the HDFS FileSystem API.
In fact, calling the hadoop shell script and passing it the fs option sets the Java application
entry point to the org.apache.hadoop.fs.FsShell class. The FsShell class then
instantiates an org.apache.hadoop.fs.FileSystem object and maps the filesystem's
methods to the fs command-line arguments. For example, hadoop fs –mkdir /data/
weblogs, is equivalent to FileSystem.mkdirs(new Path("/data/weblogs")).
Similarly, hadoop fs –copyFromLocal weblog_entries.txt /data/weblogs is
equivalent to FileSystem.copyFromLocal(new Path("weblog_entries.txt"),
new Path("/data/weblogs")). The same applies to copying the data from HDFS to the
local filesystem. The copyToLocal Hadoop shell command is equivalent to FileSystem.
copyToLocal(new Path("/data/weblogs/weblog_entries.txt"), new
Path("./weblog_entries.txt")). More information about the FileSystem class
and its methods can be found on its official Javadoc page: http://hadoop.apache.org/
docs/r0.20.2/api/org/apache/hadoop/fs/FileSystem.html.

The mkdir command takes the general form of hadoop fs –mkdir PATH1 PATH2.
For example, hadoop fs –mkdir /data/weblogs/12012012 /data/
weblogs/12022012 would create two folders in HDFS: /data/weblogs/12012012
and /data/weblogs/12022012, respectively. The mkdir command returns 0 on
success and -1 on error:

hadoop fs –mkdir /data/weblogs/12012012 /data/weblogs/12022012

hadoop fs –ls /data/weblogs

http://www.PacktPub.com
http://www.PacktPub.com/support
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/fs/FileSystem.html
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/fs/FileSystem.html

Hadoop Distributed File System – Importing and Exporting Data

12

The copyFromLocal command takes the general form of hadoop fs –copyFromLocal
LOCAL_FILE_PATH URI. If the URI is not explicitly given, a default is used. The default
value is set using the fs.default.name property from the core-site.xml file.
copyFromLocal returns 0 on success and -1 on error.

The copyToLocal command takes the general form of hadoop fs –copyToLocal
[-ignorecrc] [-crc] URI LOCAL_FILE_PATH. If the URI is not explicitly given, a default
is used. The default value is set using the fs.default.name property from the core-site.
xml file. The copyToLocal command does a Cyclic Redundancy Check (CRC) to verify that
the data copied was unchanged. A failed copy can be forced using the optional –ignorecrc
argument. The file and its CRC can be copied using the optional –crc argument.

There's more...
The command put is similar to copyFromLocal. Although put is slightly more general,
it is able to copy multiple files into HDFS, and also can read input from stdin.

The get Hadoop shell command can be used in place of the copyToLocal command.
At this time they share the same implementation.

When working with large datasets, the output of a job will be partitioned into one or more
parts. The number of parts is determined by the mapred.reduce.tasks property which
can be set using the setNumReduceTasks() method on the JobConf class. There will
be one part file for each reducer task. The number of reducers that should be used varies
from job to job; therefore, this property should be set at the job and not the cluster level.
The default value is 1. This means that the output from all map tasks will be sent to a single
reducer. Unless the cumulative output from the map tasks is relatively small, less than a
gigabyte, the default value should not be used. Setting the optimal number of reduce tasks
can be more of an art than science. In the JobConf documentation it is recommended that
one of the two formulae be used:

0.95 * NUMBER_OF_NODES * mapred.tasktracker.reduce.tasks.maximum

Or

1.75 * NUMBER_OF_NODES * mapred.tasktracker.reduce.tasks.maximum

For example, if your cluster has 10 nodes running a task tracker and the mapred.
tasktracker.reduce.tasks.maximum property is set to have a maximum of five reduce
slots, the formula would look like this 0.95 * 10 * 5 = 47.5. Since the number of reduce slots
must be a nonnegative integer, this value should be rounded or trimmed.

Chapter 1

13

The JobConf documentation provides the following rationale for using these multipliers at
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapred/
JobConf.html#setNumReduceTasks(int):

With 0.95 all of the reducers can launch immediately and start transferring map
outputs as the maps finish. With 1.75 the faster nodes will finish their first round
of reduces and launch a second wave of reduces doing a much better job of
load balancing.

The partitioned output can be referenced within HDFS using the folder name. A job given
the folder name will read each part file when processing. The problem is that the get and
copyToLocal commands only work on files. They cannot be used to copy folders. It would
be cumbersome and inefficient to copy each part file (there could be hundreds or even
thousands of them) and merge them locally. Fortunately, the Hadoop shell provides the
getmerge command to merge all of the distributed part files into a single output file and
copy that file to the local filesystem.

The following Pig script illustrates the getmerge command:

weblogs = load '/data/weblogs/weblog_entries.txt' as
 (md5:chararray,
 url:chararray,
 date:chararray,
 time:chararray,
 ip:chararray);

md5_grp = group weblogs by md5 parallel 4;

store md5_grp into '/data/weblogs/weblogs_md5_groups.bcp';

The Pig script can be executed from the command line by running the following command:

pig –f weblogs_md5_group.pig

This Pig script reads in each line of the weblog_entries.txt file. It then groups the data
by the md5 value. parallel 4 is the Pig-specific way of setting the number of mapred.
reduce.tasks. Since there are four reduce tasks that will be run as part of this job, we
expect four part files to be created. The Pig script stores its output into /data/weblogs/
weblogs_md5_groups.bcp.

Hadoop Distributed File System – Importing and Exporting Data

14

Notice that weblogs_md5_groups.bcp is actually a folder. Listing that folder will show the
following output:

Within the /data/weblogs/weblogs_md5_groups.bcp folder, there are four part files:
part-r-00000, part-r-00001, part-r-00002, and part-r-00003.

The getmerge command can be used to merge all four of the part files and then copy the
singled merged file to the local filesystem as shown in the following command line:

hadoop fs –getmerge /data/weblogs/weblogs_md5_groups.bcp weblogs_md5_
groups.bcp

Listing the local folder we get the following output:

See also
 f The Reading and writing data to HDFS recipe in Chapter 2, HDFS shows how to use

the FileSystem API directly.

 f The following links show the different filesystem shell commands and the Java API
docs for the FileSystem class:

 � http://hadoop.apache.org/common/docs/r0.20.2/hdfs_shell.
html

 � http://hadoop.apache.org/docs/r0.20.2/api/org/apache/
hadoop/fs/FileSystem.html

http://hadoop.apache.org/common/docs/r0.20.2/hdfs_shell.html
http://hadoop.apache.org/common/docs/r0.20.2/hdfs_shell.html
http://hadoop.apache.org/common/docs/r0.20.2/hdfs_shell.html
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/fs/FileSystem.html
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/fs/FileSystem.html
http://hadoop.apache.org/docs/r0.20.2/api/org/apache/hadoop/fs/FileSystem.html

Chapter 1

15

Moving data efficiently between clusters
using Distributed Copy

Hadoop Distributed Copy (distcp) is a tool for efficiently copying large amounts of data
within or in between clusters. It uses the MapReduce framework to do the copying. The
benefits of using MapReduce include parallelism, error handling, recovery, logging, and
reporting. The Hadoop Distributed Copy command (distcp) is useful when moving data
between development, research, and production cluster environments.

Getting ready
The source and destination clusters must be able to reach each other.

The source cluster should have speculative execution turned off for map tasks. In the mapred-
site.xml configuration file, set mapred.map.tasks.speculative.execution to false.
This will prevent any undefined behavior from occurring in the case where a map task fails.

The source and destination cluster must use the same RPC protocol. Typically, this means
that the source and destination cluster should have the same version of Hadoop installed.

How to do it...
Complete the following steps to copy a folder from one cluster to another:

1. Copy the weblogs folder from cluster A to cluster B:
hadoop distcp hdfs://namenodeA/data/weblogs hdfs://namenodeB/data/
weblogs

2. Copy the weblogs folder from cluster A to cluster B, overwriting any existing files:
hadoop distcp –overwrite hdfs://namenodeA/data/weblogs hdfs://
namenodeB/data/weblogs

3. Synchronize the weblogs folder between cluster A and cluster B:

hadoop distcp –update hdfs://namenodeA/data/weblogs hdfs://
namenodeB/data/weblogs

Hadoop Distributed File System – Importing and Exporting Data

16

How it works...
On the source cluster, the contents of the folder being copied are treated as a large
temporary file. A map-only MapReduce job is created, which will do the copying between
clusters. By default, each mapper will be given a 256-MB block of the temporary file. For
example, if the weblogs folder was 10 GB in size, 40 mappers would each get roughly 256
MB to copy. distcp also has an option to specify the number of mappers.

hadoop distcp –m 10 hdfs://namenodeA/data/weblogs hdfs://namenodeB/data/
weblogs

In the previous example, 10 mappers would be used. If the weblogs folder was 10 GB in size,
then each mapper would be given roughly 1 GB to copy.

There's more...
While copying between two clusters that are running different versions of Hadoop, it is
generally recommended to use HftpFileSystem as the source. HftpFileSystem is
a read-only filesystem. The distcp command has to be run from the destination server:

hadoop distcp hftp://namenodeA:port/data/weblogs hdfs://namenodeB/data/
weblogs

In the preceding command, port is defined by the dfs.http.address property in the
hdfs-site.xml configuration file.

Importing data from MySQL into HDFS using
Sqoop

Sqoop is an Apache project that is part of the broader Hadoop ecosphere. In many
ways Sqoop is similar to distcp (See the Moving data efficiently between clusters
using Distributed Copy recipe of this chapter). Both are built on top of MapReduce and
take advantage of its parallelism and fault tolerance. Instead of moving data between
clusters, Sqoop was designed to move data from and into relational databases using
a JDBC driver to connect.

Its functionality is extensive. This recipe will show how to use Sqoop to import data
from MySQL to HDFS using the weblog entries as an example.

Chapter 1

17

Getting ready
This example uses Sqoop v1.3.0.

If you are using CDH3, you already have Sqoop installed. If you are not running CDH3, you
can find instructions for your distro at https://ccp.cloudera.com/display/CDHDOC/
Sqoop+Installation.

This recipe assumes that you have a MySQL instance up and running that can reach your
Hadoop cluster. The mysql.user table is configured to accept a user connecting from
the machine where you will be running Sqoop. Visit http://dev.mysql.com/doc/
refman//5.5/en/installing.html for more information on installing and
configuring MySQL.

The MySQL JDBC driver JAR file has been copied to $SQOOP_HOME/libs. The driver can
be downloaded from http://dev.mysql.com/downloads/connector/j/.

How to do it...
Complete the following steps to transfer data from a MySQL table to an HDFS file:

1. Create a new database in the MySQL instance:
CREATE DATABASE logs;

2. Create and load the weblogs table:
USE logs;

CREATE TABLE weblogs(

 md5 VARCHAR(32),

 url VARCHAR(64),

 request_date DATE,

 request_time TIME,

 ip VARCHAR(15)

);

LOAD DATA INFILE '/path/weblog_entries.txt' INTO TABLE weblogs

FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\r\n';

https://ccp.cloudera.com/display/CDHDOC/Sqoop+Installation
https://ccp.cloudera.com/display/CDHDOC/Sqoop+Installation
http://dev.mysql.com/doc/refman/5.5/en/installing.html
http://dev.mysql.com/doc/refman/5.5/en/installing.html
http://dev.mysql.com/downloads/connector/j/

Hadoop Distributed File System – Importing and Exporting Data

18

3. Select a count of rows from the weblogs table:
mysql> select count(*) from weblogs;

The output would be:

+----------+

| count(*) |

+----------+

| 3000 |

+----------+

1 row in set (0.01 sec)

4. Import the data from MySQL to HDFS:

sqoop import -m 1 --connect jdbc:mysql://<HOST>:<PORT>/logs
--username hdp_usr --password test1 --table weblogs --target-dir /
data/weblogs/import

The output would be:

INFO orm.CompilationManager: Writing jar file:

/tmp/sqoop-jon/compile/f57ad8b208643698f3d01954eedb2e4d/weblogs.
jar

WARN manager.MySQLManager: It looks like you are importing from
mysql.

WARN manager.MySQLManager: This transfer can be faster! Use the
--direct

WARN manager.MySQLManager: option to exercise a MySQL-specific
fast path.

...

INFO mapred.JobClient: Map input records=3000

INFO mapred.JobClient: Spilled Records=0

INFO mapred.JobClient: Total committed heap usage
(bytes)=85000192

INFO mapred.JobClient: Map output records=3000

INFO mapred.JobClient: SPLIT_RAW_BYTES=87

INFO mapreduce.ImportJobBase: Transferred 245.2451 KB in 13.7619
seconds (17.8206 KB/sec)

INFO mapreduce.ImportJobBase: Retrieved 3000 records.

Chapter 1

19

How it works...
Sqoop loads the JDBC driver defined in the --connect statement from $SQOOP_HOME/libs,
where $SQOOP_HOME is the full path to the location where Sqoop is installed. The --username
and --password options are used to authenticate the user issuing the command against the
MySQL instance. The mysql.user table must have an entry for the --username option and
the host of each node in the Hadoop cluster; or else Sqoop will throw an exception indicating
that the host is not allowed to connect to the MySQL Server.

mysql> USE mysql;

mysql> select host, user from user;

The output would be:

+------------+-----------+

| user | host |

+------------+-----------+

| hdp_usr | hdp01 |

| hdp_usr | hdp02 |

| hdp_usr | hdp03 |

| hdp_usr | hdp04 |

| root | 127.0.0.1 |

| root | ::1 |

| root | localhost |

+------------+-----------+

7 rows in set (1.04 sec)

In this example, we connected to the MySQL server using hdp_usr. Our cluster has four
machines, hdp01, hdp02, hdp03, and hdp04.

The --table argument tells Sqoop which table to import. In our case, we are looking to
import the weblogs table into HDFS. The --target-dir argument is passed the folder path
in HDFS where the imported table will be stored:

hadoop fs -ls /data/weblogs/import

The output would be:

-rw-r--r-- 1 hdp_usr hdp_grp 0 2012-06-08 23:47 /data/
weblogs/import/_SUCCESS

drwxr-xr-x- - hdp_usr hdp_grp 0 2012-06-08 23:47 /data/
weblogs/import/_logs

-rw-r--r-- 1 hdp_usr hdp_grp 251131 2012-06-08 23:47 /data/
weblogs/import/part-m-00000

Hadoop Distributed File System – Importing and Exporting Data

20

By default, the imported data will be split on the primary key. If the table being imported
does not have a primary key, the -m or --split-by arguments must be used to tell Sqoop
how to split the data. In the preceding example, the -m argument was used. The -m argument
controls the number of mappers that are used to import the data. Since -m was set to 1, a
single mapper was used to import the data. Each mapper used will produce a part file.

This one line hides an incredible amount of complexity. Sqoop uses the metadata stored
by the database to generate the DBWritable classes for each column. These classes are
used by DBInputFormat, a Hadoop input format with the ability to read the results of
arbitrary queries run against a database. In the preceding example, a MapReduce job is
started using the DBInputFormat class to retrieve the contents from the weblogs table.
The entire weblogs table is scanned and stored in /data/weblogs/import.

There's more...
There are many useful options for configuring how Sqoop imports data. Sqoop can import
data as Avro or Sequence files using the --as-avrodatafile and --as-sequencefile
arguments respectively. The data can be compressed while being imported as well using
the -z or --compress arguments. The default codec is GZIP, but any Hadoop compression
codec can be used by supplying the --compression-codec <CODEC> argument. See the
Compressing data using LZO recipe in Chapter 2, HDFS. Another useful option is --direct.
This argument instructs Sqoop to use native import/export tools if they are supported by the
configured database. In the preceding example, if --direct was added as an argument,
Sqoop would use mysqldump for fast exporting of the weblogs table. The --direct
argument is so important that in the preceding example, a warning message was logged
as follows:

WARN manager.MySQLManager: It looks like you are importing from mysql.

WARN manager.MySQLManager: This transfer can be faster! Use the --direct

WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.

See also
 f Exporting data from HDFS into MySQL using Sqoop

Chapter 1

21

Exporting data from HDFS into MySQL
using Sqoop

Sqoop is an Apache project that is part of the broader Hadoop ecosphere. In many ways
Sqoop is similar to distcp (See the Moving data efficiently between clusters using Distributed
Copy recipe of this chapter). Both are built on top of MapReduce and take advantage of its
parallelism and fault tolerance. Instead of moving data between clusters, Sqoop was designed
to move data from and into relational databases using a JDBC driver to connect.

Its functionality is extensive. This recipe will show how to use Sqoop to export data from
HDFS to MySQL using the weblog entries as an example.

Getting ready
This example uses Sqoop v1.3.0.

If you are using CDH3, you already have Sqoop installed. If you are not running CDH3 you
can find instructions for your distro at https://ccp.cloudera.com/display/CDHDOC/
Sqoop+Installation.

This recipe assumes that you have a MySQL instance up and running that can reach
your Hadoop cluster. The mysql.user table is configured to accept a user connecting
from the machine where you will be running Sqoop. Visit http://dev.mysql.com/doc/
refman/5.5/en/installing.html for more information on installing and
configuring MySQL.

The MySQL JDBC driver JAR file has been copied to $SQOOP_HOME/libs. The driver can
be downloaded from http://dev.mysql.com/downloads/connector/j/.

Follow the Importing and exporting data into HDFS using the Hadoop shell commands
recipe of this chapter to load the weblog_entires.txt file into HDFS.

How to do it...
Complete the following steps to transfer data from HDFS to a MySQL table:

1. Create a new database in the MySQL instance:
CREATE DATABASE logs;

https://ccp.cloudera.com/display/CDHDOC/Sqoop+Installation
http://dev.mysql.com/doc/refman/5.5/en/installing.html
http://dev.mysql.com/doc/refman/5.5/en/installing.html
http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/

Hadoop Distributed File System – Importing and Exporting Data

22

2. Create the weblogs_from_hdfs table:
USE logs;

CREATE TABLE weblogs_from_hdfs (

 md5 VARCHAR(32),

 url VARCHAR(64),

 request_date DATE,

 request_time TIME,

 ip VARCHAR(15)

);

3. Export the weblog_entries.txt file from HDFS to MySQL:

sqoop export -m 1 --connect jdbc:mysql://<HOST>:<PORT>/logs
--username hdp_usr --password test1 --table weblogs_from_hdfs
--export-dir /data/weblogs/05102012 --input-fields-terminated-by
'\t' --mysql-delmiters

The output is as follows:

INFO mapreduce.ExportJobBase: Beginning export of weblogs_from_
hdfs

input.FileInputFormat: Total input paths to process : 1

input.FileInputFormat: Total input paths to process : 1

mapred.JobClient: Running job: job_201206222224_9010

INFO mapred.JobClient: Map-Reduce Framework

INFO mapred.JobClient: Map input records=3000

INFO mapred.JobClient: Spilled Records=0

INFO mapred.JobClient: Total committed heap usage
(bytes)=85000192

INFO mapred.JobClient: Map output records=3000

INFO mapred.JobClient: SPLIT_RAW_BYTES=133

INFO mapreduce.ExportJobBase: Transferred 248.3086 KB in 12.2398
seconds (20.287 KB/sec)

INFO mapreduce.ExportJobBase: Exported 3000 records.

Chapter 1

23

How it works...
Sqoop loads the JDBC driver defined in the --connect statement from $SQOOP_HOME/
libs, where $SQOOP_HOME is the full path to the location where Sqoop is installed. The
--username and --password options are used to authenticate the user issuing the
command against the MySQL instance. The mysql.user table must have an entry for the
--username and the host of each node in the Hadoop cluster; or else Sqoop will throw an
exception indicating that the host is not allowed to connect to the MySQL Server.

mysql> USE mysql;

mysql> select host, user from user;

+---------------+-----------+

| user | host |

+---------------+-----------+

| hdp_usr | hdp01 |

| hdp_usr | hdp02 |

| hdp_usr | hdp03 |

| hdp_usr | hdp04 |

| root | 127.0.0.1 |

| root | ::1 |

| root | localhost |

+---------------+-----------+

7 rows in set (1.04 sec)

In this example, we connected to the MySQL server using hdp_usr. Our cluster has four
machines, hdp01, hdp02, hdp03, and hdp04.

The --table argument identifies the MySQL table that will receive the data from HDFS.
This table must be created before running the Sqoop export command. Sqoop uses the
metadata of the table, the number of columns, and their types, to validate the data coming
from the HDFS folder and to create INSERT statements. For example, the export job can be
thought of as reading each line of the weblogs_entries.txt file in HDFS and producing
the following output:

INSERT INTO weblogs_from_hdfs
VALUES('aabba15edcd0c8042a14bf216c5', '/jcwbtvnkkujo.html', '2012-05-
10', '21:25:44', '148.113.13.214');

INSERT INTO weblogs_from_hdfs
VALUES('e7d3f242f111c1b522137481d8508ab7', '/ckyhatbpxu.html', '2012-
05-10', '21:11:20', '4.175.198.160');

Hadoop Distributed File System – Importing and Exporting Data

24

INSERT INTO weblogs_from_hdfs
VALUES('b8bd62a5c4ede37b9e77893e043fc1', '/rr.html', '2012-05-10',
'21:32:08', '24.146.153.181');
...

By default, Sqoop export creates INSERT statements. If the --update-key argument is
specified, UPDATE statements will be created instead. If the preceding example had used
the argument --update-key md5, the generated code would have run like the following:

UPDATE weblogs_from_hdfs SET url='/jcwbtvnkkujo.html', request_
date='2012-05-10'request_time='21:25:44'
ip='148.113.13.214'WHERE md5='aabba15edcd0c8042a14bf216c5'

UPDATE weblogs_from_hdfs SET url='/jcwbtvnkkujo.html', request_
date='2012-05-10'request_time='21:11:20' ip='4.175.198.160' WHERE
md5='e7d3f242f111c1b522137481d8508ab7'

UPDATE weblogs_from_hdfs SET url='/jcwbtvnkkujo.html', request_
date='2012-05-10'request_time='21:32:08' ip='24.146.153.181' WHERE
md5='b8bd62a5c4ede37b9e77893e043fc1'

In the case where the --update-key value is not found, setting the --update-mode
to allowinsert will insert the row.

The -m argument sets the number of map jobs reading the file splits from HDFS. Each
mapper will have its own connection to the MySQL Server. It will insert up to 100 records per
statement. After it has completed 100 INSERT statements, that is 10,000 records in total,
it will commit the current transaction. It is possible that a map task failure could cause data
inconsistency resulting in possible insert collisions or duplicated data. These issues can be
overcome with the use of the --staging-table argument. This will cause the job to insert
into a staging table, and then in one transaction, move the data from the staging table to the
table specified by the --table argument. The --staging-table argument must have the
same format as --table. The --staging-table argument must be empty, or else the
--clear-staging-table argument must be used.

See also
 f Importing data from MySQL into HDFS using Sqoop

Chapter 1

25

Configuring Sqoop for Microsoft SQL Server
This recipe shows how to configure Sqoop to connect with Microsoft SQL Server databases.
This will allow data to be efficiently loaded from a Microsoft SQL Server database into HDFS.

Getting ready
This example uses Sqoop v1.3.0.

If you are using CDH3, you already have Sqoop installed. If you are not running CDH3, you
can find instructions for your distro at https://ccp.cloudera.com/display/CDHDOC/
Sqoop+Installation.

This recipe assumes that you have an instance of SQL Server up and running that can
connect to your Hadoop cluster.

How to do it...
Complete the following steps to configure Sqoop to connect with Microsoft SQL Server:

1. Download the Microsoft SQL Server JDBC Driver 3.0 from the following site
http://download.microsoft.com/download/D/6/A/D6A241AC-433E-
4CD2-A1CE-50177E8428F0/1033/sqljdbc_3.0.1301.101_enu.tar.gz.

This download contains the SQL Server JDBC driver (sqljdbc4.jar). Sqoop
connects to relational databases using JDBC drivers.

2. Uncompress and extract the TAR file:
gzip -d sqljdbc_3.0.1301.101_enu.tar.gz

tar -xvf sqljdbc_3.0.1301.101_enu.tar

This will result in a new folder being created, sqljdbc_3.0.

3. Copy sqljdbc4.jar to $SQOOP_HOME/lib:
cp sqljdbc_3.0/enu/sqljdbc4.jar $SQOOP_HOME/lib

Sqoop now has access to the sqljdbc4.jar file and will be able to use it to
connect to a SQL Server instance.

https://ccp.cloudera.com/display/CDHDOC/Sqoop+Installation
https://ccp.cloudera.com/display/CDHDOC/Sqoop+Installation
http://download.microsoft.com/download/D/6/A/D6A241AC-433E-4CD2-A1CE-50177E8428F0/1033/sqljdbc_3.0.1301.101_enu.tar.gz
http://download.microsoft.com/download/D/6/A/D6A241AC-433E-4CD2-A1CE-50177E8428F0/1033/sqljdbc_3.0.1301.101_enu.tar.gz
http://download.microsoft.com/download/D/6/A/D6A241AC-433E-4CD2-A1CE-50177E8428F0/1033/sqljdbc_3.0.1301.101_enu.tar.gz

Hadoop Distributed File System – Importing and Exporting Data

26

4. Download the Microsoft SQL Server Connector for Apache Hadoop from the site
http://download.microsoft.com/download/B/E/5/BE5EC4FD-9EDA-
4C3F-8B36-1C8AC4CE2CEF/sqoop-sqlserver-1.0.tar.gz.

5. Uncompress and extract the TAR file:
gzip -d sqoop-sqlserver-1.0.tar.gz

tar -xvf sqoop-sqlserver-1.0.tar

This will result in a new folder being created, sqoop-sqlserver-1.0.

6. Set the MSSQL_CONNECTOR_HOME environment variable:
export MSSQL_CONNECTOR_HOME=/path/to/sqoop-sqlserver-1.0

7. Run the installation script:
./install.sh

8. For importing and exporting data, see the Importing data from MySQL into HDFS
using Sqoop and Exporting data from HDFS into MySQL using Sqoop recipes of this
chapter. These recipes apply to SQL Server as well. The --connect argument must
be changed to --connect jdbc:sqlserver://<HOST>:<PORT>.

How it works...
Sqoop communicates with databases using JDBC. After adding the sqljdbc4.jar file to
the $SQOOP_HOME/lib folder, Sqoop will be able to connect to SQL Server instances using
--connect jdbc:sqlserver://<HOST>:<PORT>. In order for SQL Server to have full
compatibility with Sqoop, some configuration changes are necessary. The configurations
are updated by running the install.sh script.

Exporting data from HDFS into MongoDB
This recipe will use the MongoOutputFormat class to load data from an HDFS instance
into a MongoDB collection.

Getting ready
The easiest way to get started with the Mongo Hadoop Adaptor is to clone the Mongo-Hadoop
project from GitHub and build the project configured for a specific version of Hadoop. A Git
client must be installed to clone this project.

This recipe assumes that you are using the CDH3 distribution of Hadoop.

The official Git Client can be found at http://git-scm.com/downloads.

http://download.microsoft.com/download/B/E/5/BE5EC4FD-9EDA-4C3F-8B36-1C8AC4CE2CEF/sqoop-sqlserver-1.0.tar.gz
http://download.microsoft.com/download/B/E/5/BE5EC4FD-9EDA-4C3F-8B36-1C8AC4CE2CEF/sqoop-sqlserver-1.0.tar.gz
http://git-scm.com/downloads
http://windows.github.com/

Chapter 1

27

GitHub for Windows can be found at http://windows.github.com/.

GitHub for Mac can be found at http://mac.github.com/.

The Mongo Hadoop Adaptor can be found on GitHub at https://github.com/mongodb/
mongo-hadoop. This project needs to be built for a specific version of Hadoop. The resulting
JAR file must be installed on each node in the $HADOOP_HOME/lib folder.

The Mongo Java Driver is required to be installed on each node in the $HADOOP_HOME/
lib folder. It can be found at https://github.com/mongodb/mongo-java-driver/
downloads.

How to do it...
Complete the following steps to copy data form HDFS into MongoDB:

1. Clone the mongo-hadoop repository with the following command line:
git clone https://github.com/mongodb/mongo-hadoop.git

2. Switch to the stable release 1.0 branch:
git checkout release-1.0

3. Set the Hadoop version which mongo-hadoop should target. In the folder
 that mongo-hadoop was cloned to, open the build.sbt file with a text editor.
Change the following line:
hadoopRelease in ThisBuild := "default"

to

hadoopRelease in ThisBuild := "cdh3"

4. Build mongo-hadoop:
./sbt package

This will create a file named mongo-hadoop-core_cdh3u3-1.0.0.jar in the
core/target folder.

5. Download the MongoDB Java Driver Version 2.8.0 from https://github.com/
mongodb/mongo-java-driver/downloads.

6. Copy mongo-hadoop and the MongoDB Java Driver to $HADOOP_HOME/lib on
each node:
cp mongo-hadoop-core_cdh3u3-1.0.0.jar mongo-2.8.0.jar $HADOOP_
HOME/lib

http://windows.github.com/
http://mac.github.com/
https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-java-driver/downloads
https://github.com/mongodb/mongo-java-driver/downloads
https://github.com/mongodb/mongo-java-driver/downloads
https://github.com/mongodb/mongo-java-driver/downloads

Hadoop Distributed File System – Importing and Exporting Data

28

7. Create a Java MapReduce program that will read the weblog_entries.txt file
from HDFS and write them to MongoDB using the MongoOutputFormat class:
import java.io.*;

import org.apache.commons.logging.*;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.*;
import org.bson.*;
import org.bson.types.ObjectId;

import com.mongodb.hadoop.*;
import com.mongodb.hadoop.util.*;

public class ExportToMongoDBFromHDFS {

 private static final Log log =
LogFactory.getLog(ExportToMongoDBFromHDFS.class);

 public static class ReadWeblogs extends Mapper<LongWritable,
Text, ObjectId, BSONObject>{

 public void map(Text key, Text value, Context context)
throws IOException, InterruptedException{

 System.out.println("Key: " + key);
 System.out.println("Value: " + value);

 String[] fields = value.toString().split("\t");

 String md5 = fields[0];
 String url = fields[1];
 String date = fields[2];
 String time = fields[3];
 String ip = fields[4];

 BSONObject b = new BasicBSONObject();
 b.put("md5", md5);
 b.put("url", url);
 b.put("date", date);

Chapter 1

29

 b.put("time", time);
 b.put("ip", ip);

 context.write(new ObjectId(), b);
}
 }

 public static void main(String[] args) throws Exception{

 final Configuration conf = new Configuration();
MongoConfigUtil.setOutputURI(conf,"mongodb://<HOST>:<PORT>/test.
weblogs");

 System.out.println("Configuration: " + conf);

 final Job job = new Job(conf, "Export to Mongo");

 Path in = new Path("/data/weblogs/weblog_entries.txt");
 FileInputFormat.setInputPaths(job, in);

 job.setJarByClass(ExportToMongoDBFromHDFS.class);
 job.setMapperClass(ReadWeblogs.class);

 job.setOutputKeyClass(ObjectId.class);
 job.setOutputValueClass(BSONObject.class);

 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(MongoOutputFormat.class);

 job.setNumReduceTasks(0);

 System.exit(job.waitForCompletion(true) ? 0 : 1);

 }

}

8. Export as a runnable JAR file and run the job:
hadoop jar ExportToMongoDBFromHDFS.jar

9. Verify that the weblogs MongoDB collection was populated from the Mongo shell:

db.weblogs.find();

Hadoop Distributed File System – Importing and Exporting Data

30

How it works...
The Mongo Hadoop Adaptor provides a new Hadoop compatible filesystem implementation,
MongoInputFormat, and MongoOutputFormat. These abstractions make working with
MongoDB similar to working with any Hadoop compatible filesystem.

Importing data from MongoDB into HDFS
This recipe will use the MongoInputFormat class to load data from a MongoDB collection
into HDFS.

Getting ready
The easiest way to get started with the Mongo Hadoop Adaptor is to clone the
mongo-hadoop project from GitHub and build the project configured for a specific
version of Hadoop. A Git client must be installed to clone this project.

This recipe assumes that you are using the CDH3 distribution of Hadoop.

The official Git Client can be found at http://git-scm.com/downloads.

GitHub for Windows can be found at http://windows.github.com/.

GitHub for Mac can be found at http://mac.github.com/.

The Mongo Hadoop Adaptor can be found on GitHub at https://github.com/mongodb/
mongo-hadoop. This project needs to be built for a specific version of Hadoop. The resulting
JAR file must be installed on each node in the $HADOOP_HOME/lib folder.

The Mongo Java Driver is required to be installed on each node in the $HADOOP_HOME/
lib folder. It can be found at https://github.com/mongodb/mongo-java-driver/
downloads.

How to do it...
Complete the following steps to copy data from MongoDB into HDFS:

1. Clone the mongo-hadoop repository:
git clone https://github.com/mongodb/mongo-hadoop.git

2. Switch to the stable release 1.0 branch:
git checkout release-1.0

http://git-scm.com/downloads
http://windows.github.com/
http://mac.github.com/
https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-java-driver/downloads
https://github.com/mongodb/mongo-java-driver/downloads

Chapter 1

31

3. Set the Hadoop version which mongo-hadoop should target. In the folder
that mongo-hadoop was cloned to, open the build.sbt file with a text editor.
Change the following line:
hadoopRelease in ThisBuild := "default"

to

hadoopRelease in ThisBuild := "cdh3"

4. Build mongo-hadoop:
./sbt package

This will create a file named mongo-hadoop-core_cdh3u3-1.0.0.jar in
the core/target folder.

5. Download the Mongo Java Driver Version 2.8.0 from https://github.com/
mongodb/mongo-java-driver/downloads.

6. Copy mongo-hadoop and the MongoDB Java Driver to $HADOOP_HOME/lib on
each node:
cp mongo-hadoop-core_cdh3u3-1.0.0.jar mongo-2.8.0.jar $HADOOP_
HOME/lib

7. Create a Java MapReduce program that will read the weblogs file from a MongoDB
collection and write them to HDFS:
import java.io.*;

import org.apache.commons.logging.*;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.lib.output.*;
import org.apache.hadoop.mapreduce.*;
import org.bson.*;

import com.mongodb.hadoop.*;
import com.mongodb.hadoop.util.*;

public class ImportWeblogsFromMongo {

 private static final Log log = LogFactory.
getLog(ImportWeblogsFromMongo.class);

 public static class ReadWeblogsFromMongo extends Mapper<Object,
BSONObject, Text, Text>{

https://github.com/mongodb/mongo-java-driver/downloads
https://github.com/mongodb/mongo-java-driver/downloads

Hadoop Distributed File System – Importing and Exporting Data

32

 public void map(Object key, BSONObject value, Context
context) throws IOException, InterruptedException{

 System.out.println("Key: " + key);
 System.out.println("Value: " + value);

 String md5 = value.get("md5").toString();
 String url = value.get("url").toString();
 String date = value.get("date").toString();
 String time = value.get("time").toString();
 String ip = value.get("ip").toString();
 String output = "\t" + url + "\t" + date + "\t" +
 time + "\t" + ip;
 context.write(new Text(md5), new Text(output));
 }
 }

 public static void main(String[] args) throws Exception{

 final Configuration conf = new Configuration();
 MongoConfigUtil.setInputURI(conf,
"mongodb://<HOST>:<PORT>/test.weblogs");
 MongoConfigUtil.setCreateInputSplits(conf, false);
 System.out.println("Configuration: " + conf);

 final Job job = new Job(conf, "Mongo Import");

 Path out = new Path("/data/weblogs/mongo_import");
 FileOutputFormat.setOutputPath(job, out);
 job.setJarByClass(ImportWeblogsFromMongo.class);
 job.setMapperClass(ReadWeblogsFromMongo.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(Text.class);

 job.setInputFormatClass(MongoInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);

 job.setNumReduceTasks(0);

 System.exit(job.waitForCompletion(true) ? 0 : 1);

 }

}

Chapter 1

33

This map-only job uses several classes provided by the Mongo Hadoop Adaptor. Data
that is read in from HDFS is converted to a BSONObject. This class represents a
binary format JSON value. MongoDB uses these BSON objects to efficiently serialize,
transfer, and store data. The Mongo Hadoop Adaptor also provides a convenient
MongoConfigUtil class to help set up the job to connect to MongoDB as if it
were a filesystem.

8. Export as runnable JAR file and run the job:
hadoop jar ImportWeblogsFromMongo.jar

9. Verify that the weblogs were imported from MongoDB:

hadoop fs -ls /data/weblogs/mongo_import

How it works...
The Mongo Hadoop Adaptor provides a new Hadoop compatible filesystem implementation,
MongoInputFormat and MongoOutputFormat. These abstractions make working with
MongoDB similar to working with any Hadoop compatible filesystem.

Exporting data from HDFS into MongoDB
using Pig

MongoDB is a NoSQL database that was designed for storing and retrieving large amounts of
data. MongoDB is often used for user-facing data. This data must be cleaned and formatted
before it can be made available. Apache Pig was designed, in part, with this kind of work in
mind. The MongoStorage class makes it extremely convenient to bulk process the data
in HDFS using Pig and then load this data directly into MongoDB. This recipe will use the
MongoStorage class to store data from HDFS into a MongoDB collection.

Getting ready
The easiest way to get started with the Mongo Hadoop Adaptor is to clone the
mongo-hadoop project from GitHub and build the project configured for a specific version
of Hadoop. A Git client must be installed to clone this project.

This recipe assumes that you are using the CDH3 distribution of Hadoop.

The official Git Client can be found at http://git-scm.com/downloads.

GitHub for Windows can be found at http://windows.github.com/.

GitHub for Mac can be found at http://mac.github.com/.

http://git-scm.com/downloads
http://windows.github.com/
http://mac.github.com/

Hadoop Distributed File System – Importing and Exporting Data

34

The Mongo Hadoop Adaptor can be found on GitHub at https://github.com/mongodb/
mongo-hadoop. This project needs to be built for a specific version of Hadoop. The resulting
JAR file must be installed on each node in the $HADOOP_HOME/lib folder.

The Mongo Java Driver is required to be installed on each node in the $HADOOP_HOME/
lib folder. It can be found at https://github.com/mongodb/mongo-java-driver/
downloads.

How to do it...
Complete the following steps to copy data from HDFS to MongoDB:

1. Clone the mongo-hadoop repository:
git clone https://github.com/mongodb/mongo-hadoop.git

2. Switch to the stable release 1.0 branch:
git checkout release-1.0

3. Set the Hadoop version which mongo-hadoop should target. In the folder
that mongo-hadoop was cloned to, open the build.sbt file with a text editor.
Change the following line:
hadoopRelease in ThisBuild := "default"

to

hadoopRelease in ThisBuild := "cdh3"

4. Build mongo-hadoop:
./sbt package

This will create a file named mongo-hadoop-core_cdh3u3-1.0.0.jar in
the core/target folder. It will also create a file named mongo-hadoop-pig_
cdh3u3-1.0.0.jar in the pig/target folder.

5. Download the Mongo Java Driver Version 2.8.0 from: https://github.com/
mongodb/mongo-java-driver/downloads.

6. Copy mongo-hadoop-core, mongo-hadoop-pig, and the MongoDB Java Driver
to $HADOOP_HOME/lib on each node:
cp mongo-hadoop-core_cdh3u3-1.0.0.jar mongo-2.8.0.jar $HADOOP_
HOME/lib

7. Create a Pig script that will read the weblogs from HDFS and store them into a
MongoDB Collection:

https://github.com/mongodb/mongo-hadoop
https://github.com/mongodb/mongo-java-driver/downloads
https://github.com/mongodb/mongo-java-driver/downloads
https://github.com/mongodb/mongo-java-driver/downloads

Chapter 1

35

register /path/to/mongo-hadoop/mongo-2.8.0.jar

register /path/to/mongo-hadoop/core/target/mongo-hadoop-core-
1.0.0.jar

register /path/to/mongo-hadoop/pig/target/mongo-hadoop-pig-
1.0.0.jar

define MongoStorage com.mongodb.hadoop.pig.MongoStorage();

weblogs = load '/data/weblogs/weblog_entries.txt' as

 (md5:chararray, url:chararry, date:chararray,
time:chararray, ip:chararray);

store weblogs into 'mongodb://<HOST>:<PORT>/test.weblogs_from_pig'
using MongoStorage();

How it works...
The Mongo Hadoop Adaptor provides a new Hadoop compatible filesystem implementation,
MongoInputFormat and MongoOutputFormat. These abstractions make working with
MongoDB similar to working with any Hadoop compatible filesystem. MongoStorage
converts Pig types to the BasicDBObjectBuilder object type, which is used by MongoDB.

Using HDFS in a Greenplum external table
Greenplum is a parallel database that distributes data and queries to one or more PostgreSQL
instances. It complements Hadoop by providing real-time or near real-time access to large
amounts of data. It supports using HDFS files as external tables. External tables are a good
solution for working with data that lives outside of the Greenplum cluster. Since data in
external tables must first travel over the network, they should be infrequently used in queries
with other data that lives inside of the Greenplum cluster. This recipe will cover creating
read-only and read/write external tables.

Getting ready
This recipe assumes that you are using the CDH3 distribution of Hadoop.

Run an instance of Greenplum that must be able to reach the Hadoop cluster found
at http://www.greenplum.com/products/greenplum-database.

http://www.greenplum.com/products/greenplum-database
http://www.greenplum.com/products/greenplum-database

Hadoop Distributed File System – Importing and Exporting Data

36

Configure Greenplum with the following:

 f gp_hadoop_target_version set to cdh3u2
 f gp_hadoop_home set to the full path of $HADOOP_HOME

Java 1.6 or above must be installed on each node in the Greenplum cluster.

How to do it...
Create an external table from the weblogs file in HDFS:

CREATE EXTERNAL TABLE weblogs(
 md5 text,
 url text,
 request_date date,
 request_time time,
 ip inet
)
LOCATION ('gphdfs://<NAMENODE_HOST>:<NAMENODE_PORT>/data/weblogs/
weblog_entries.txt')
FORMAT 'TEXT' (DELIMITER '\t');

How it works...
Greenplum has native support for loading data from HDFS in parallel. When a query is run
against the weblog_entries.txt table, the weblog_entries.txt file is loaded into
a temporary Greenplum table. The query then executes against this table. After the query
finishes the table is discarded.

There's more...
Greenplum external tables also support writing of data. This requires the WRITABLE keyword
while creating the table:

CREATE WRITABLE EXTERNAL TABLE weblogs(
 md5 text,
 url text,
 request_date date,
 request_time time,
 ip inet
)
LOCATION ('gphdfs://<NAMENODE_HOST>:<NAMENODE_PORT>/data/weblogs/
weblog_entries.txt')
FORMAT 'TEXT' (DELIMITER '\t');

More information can be found in the Greenplum administrator's handbook at http://
media.gpadmin.me/wp-content/uploads/2011/05/GP-4100-AdminGuide.pdf

http://media.gpadmin.me/wp-content/uploads/2011/05/GP-4100-AdminGuide.pdf
http://media.gpadmin.me/wp-content/uploads/2011/05/GP-4100-AdminGuide.pdf

Chapter 1

37

Using Flume to load data into HDFS
Apache Flume is a project in the Hadoop community, consisting of related projects designed
to efficiently and reliably load streaming data from many different sources into HDFS. A
common use case for Flume is loading the weblog data from several sources into HDFS.
This recipe will cover loading the weblog entries into HDFS using Flume.

Getting ready
This recipe assumes that you have Flume installed and configured.

Flume can be downloaded from its Apache page at http://incubator.apache.org/
flume/.

If you are using CDH3, Flume Version 0.9.4+25.43 is installed by default.

How to do it...
Complete the following steps to load the weblogs data into HDFS:

1. Use the dump command to test that Flume is configured properly:
flume dump 'text("/path/to/weblog_entries.txt")'

2. Use the Flume shell to execute a configuration:

flume shell -c<MASTER_HOST>:<MASTER_PORT> -e 'exec config text("/
path/to/weblog_entries.txt") | collectorSink("hdfs://<NAMENODE_
HOST>:<NAMENODE_PORT>/data/weblogs/flume")'

How it works...
Flume uses Sources and Sinks abstractions and a pipe-like data flow to link them together.
In the example, text is a source which takes a path to a file as an argument and sends
the contents of that file to the configured sink. The dump command uses the console as a
sink. With this configuration the weblog_entries.txt file is read by text and written to
the console.

In step 2, the Flume shell is used to configure and execute a job. The -c argument tells Flume
where to connect to the Flume Master node. Flume will execute the command after the -e
argument. As mentioned previously, text is a source which reads all of the contents of the
file it is passed. collectorSink is a sink which can be passed a local filesystem path or a
path in HDFS. In the preceding example, a HDFS path is given. The result of this command
will be to load the weblog_entries.txt into HDFS.

http://incubator.apache.org/flume/

Hadoop Distributed File System – Importing and Exporting Data

38

There's more...
Flume comes with several predefined Sources and Sinks. A few of the many basic
Sources include:

 f null: This opens, closes, and returns null

 f stdin: This reads from stdin

 f rpcSource: This reads either Thrift or Avro RPC

 f text: This reads the contents of a file

 f tail: This reads a file and stays open, reading data that is appended to the file

A few of the many basic Sinks include:

 f null: This drops the events

 f collectorSink: This writes to the local filesystem or HDFS

 f console: This writes to the console

 f formatDfs: This writes to HDFS in a specified format Sequence File, Avro, Thrift,
and so on

 f rpcSink: This writes either Thrift or Avro RPC

2
HDFS

In this chapter we will cover:

 f Reading and writing data to HDFS

 f Compressing data using LZO

 f Reading and writing data to SequenceFiles

 f Using Apache Avro to serialize data

 f Using Apache Thrift to serialize data

 f Using Protocol Buffers to serialize data

 f Setting the replication factor for HDFS

 f Setting the block size for HDFS

Introduction
Hadoop Distributed File System (HDFS) is a fault-tolerant distributed filesystem designed
to run on "off-the-shelf" hardware. It has been optimized for streaming reads on large files
whereas I/O throughput is favored over low latency. In addition, HDFS uses a simple model
for data consistency where files can only be written to once.

HDFS assumes disk failure as an eventuality and uses a concept called block replication
to replicate data across nodes in the cluster. HDFS uses a much larger block size when
compared to desktop filesystems. For example, the default block size for HDFS is 64 MB.
Once a file has been placed into HDFS, the file is divided into one or more data blocks and
is distributed to nodes in the cluster. In addition, copies of the data blocks are made, which
again are distributed to nodes in the cluster to ensure high data availability in case of a
disk failure. The number of copies HDFS makes of each data block is determined by the
replication factor setting. The default replication factor is 3, meaning three replicas of
a data block will be distributed across the nodes in the cluster.

HDFS

40

Finally, applications using HDFS can achieve high throughput because the Hadoop framework
was designed to move computation to the data. In other words, applications can run on the
nodes where the data resides instead of moving the data to the application. This concept is
known as data locality.

HDFS consists of three services:

HDFS Application Purpose
NameNode This maintains a catalog of all block locations in the cluster
Secondary NameNode This periodically synchronizes with the NameNode block

index. During the synchronizing process, the Secondary
NameNode retrieves the current NameNode image and edit
logs, merges them together, and then sends the merged
image back to the NameNode. The Secondary NameNode
is not a "hot" backup of the NameNode. It cannot be used in
the event of a NameNode failure.

DataNode This manages the data blocks it receives from the
NameNode. It is unaware of any other DataNodes in the
cluster and only communicates with the NameNode.

This chapter will use the FileSystem API, MapReduce, and advanced serialization libraries to
efficiently write and store data in HDFS.

Version 0.20.x does not support append operations

Reading and writing data to HDFS
There are many ways to read data from and write data to HDFS. We will start by using the
FileSystem API to create and write to a file in HDFS, followed by an application to read a file
from HDFS and write it back to the local filesystem.

Getting ready
You will need to download the weblog_entries.txt dataset from the Packt website,
http://www.packtpub.com/support.

How to do it...
Carry out the following steps to read and write data to HDFS:

Chapter 2

41

1. Once you have downloaded the test dataset, we can write an application to read a
file from the local filesystem and write the contents to HDFS.
public class HdfsWriter extends Configured implements Tool {

 public int run(String[] args) throws Exception {

 String localInputPath = args[0];
 Path outputPath = new Path(args[1]);
 Configuration conf = getConf();
 FileSystem fs = FileSystem.get(conf);
 OutputStream os = fs.create(outputPath);
 InputStream is = new BufferedInputStream(
 new FileInputStream(localInputPath));
 IOUtils.copyBytes(is, os, conf);
 return 0;
 }

 public static void main(String[] args) throws Exception {
 int returnCode = ToolRunner.run(
 new HdfsWriter(), args);
 System.exit(returnCode);
 }
}

2. Next, we write an application to read the file we just created in HDFS and write its
contents back to the local filesystem.

public class HdfsReader extends Configured implements Tool {

 public int run(String[] args) throws Exception {

 Path inputPath = new Path(args[0]);
 String localOutputPath = args[1];
 Configuration conf = getConf();
 FileSystem fs = FileSystem.get(conf);
 InputStream is = fs.open(inputPath);
 OutputStream os = new BufferedOutputStream(
 new FileOutputStream(localOutputPath));
 IOUtils.copyBytes(is, os, conf);
 return 0;
 }

 public static void main(String[] args) throws Exception {
 int returnCode = ToolRunner.run(
 new HdfsReader(), args);
 System.exit(returnCode);
 }
}

HDFS

42

How it works...
FileSystem is an abstract class that represents a generic filesystem. Most Hadoop
filesystem implementations can be accessed and manipulated through the FileSystem
object. To create an instance of the Hadoop Distributed File System, you call the method
FileSystem.get(). The FileSystem.get() method will look at the URI assigned to
the fs.default.name parameter of the Hadoop configuration files on your classpath
and choose the correct implementation of the FileSystem class to instantiate. The fs.
default.name parameter of HDFS has the value hdfs://.

Once an instance of the FileSystem class has been created, the HdfsWriter class calls
the create() method to create a file (or overwrite if it already exists) in HDFS. The create()
method returns an OutputStream object, which can be manipulated using normal Java I/O
methods. Similarly, HdfsReader calls the method open() to open a file in HDFS, which
returns an InputStream object that can be used to read the contents of the file.

There's more...
The FileSystem API is extensive. To demonstrate some of the other methods available
in the API, we can add some error checking to the HdfsWriter and HdfsReader classes
we created.

To check whether the file exists before we call create(), use:

boolean exists = fs.exists(inputPath);

To check whether the path is a file, use:

boolean isFile = fs.isFile(inputPath);

To rename a file that already exists, use:

boolean renamed = fs.rename(inputPath, new Path("old_file.txt"));

Compressing data using LZO
Hadoop supports a number of compression algorithms, including:

 f bzip2

 f gzip

 f DEFLATE

Hadoop provides Java implementations of these algorithms, and therefore, files can be
easily compressed/decompressed using the FileSystem API or MapReduce input and
output formats.

Chapter 2

43

However, there is a drawback to storing data in HDFS using the compression formats listed
previously. These formats are not splittable. Meaning, once a file is compressed using any
of the codecs that Hadoop provides, the file cannot be decompressed without the whole file
being read.

To understand why this is a drawback, you must first understand how Hadoop MapReduce
determines the number of mappers to launch for a given task. The number of mappers
launched is roughly equal to the input size divided by dfs.block.size (the default block
size is 64 MB). The blocks of work that each mapper will receive are called input splits. For
example, if the input to a MapReduce job was an uncompressed file that was 128 MB, this
would probably result in two mappers being launched (128 MB/64 MB).

Since files compressed using the bzip2, gzip, and DEFLATE codecs cannot be split, the whole
file must be given as a single input split to the mapper. Using the previous example, if the
input to a MapReduce job was a gzip compressed file that was 128 MB, the MapReduce
framework would only launch one mapper.

Now, where does LZO fit in to all of this? Well, the LZO algorithm was designed to have
fast decompression speeds while having a similar compression speed as compared to
DEFLATE. In addition, thanks to the hard work of the Hadoop community, LZO compressed
files are splittable.

bzip2 is splittable as of Hadoop Version 0.21.0; however, the algorithm
does have some performance limitations and should be investigated
thoroughly before being used in a production environment.

Getting ready
You will need to download the LZO codec implementation for Hadoop from https://
github.com/kevinweil/hadoop-lzo.

How to do it...
Perform the following steps to set up LZO and then compress and index a text file:

1. First, install the lzo and lzo-devel packages.

On Red Hat Linux, use:
yum install liblzo-devel

On Ubuntu, use:

apt-get install liblzo2-devel

https://github.com/kevinweil/hadoop-lzo
https://github.com/kevinweil/hadoop-lzo

HDFS

44

2. Navigate to the directory where you extracted the hadoop-lzo source, and build
the project.
cd kevinweil-hadoop-lzo-6bb1b7f/

export JAVA_HOME=/path/to/jdk/ # ./setup.sh

3. If the build was successful, you should see:
BUILD SUCCESSFUL

4. Copy the build JAR files to the Hadoop lib folder on your cluster.
cp build/hadoop-lzo*.jar /path/to/hadoop/lib/

5. Copy the native libraries to the Hadoop native lib folder on your cluster.
tar -cBf - -C build/hadoop-lzo-0.4.15/lib/native/ . | tar -xBvf
- -C /path/to/hadoop/lib/native

6. Next, update core-site.xml to use the LZO codec classes.
<property>
<name>io.compression.codecs</name>
<value>org.apache.hadoop.io.compress.GzipCodec,
 org.apache.hadoop.io.compress.DefaultCodec,
org.apache.hadoop.io.compress.BZip2Codec,
com.hadoop.compression.lzo.LzoCodec,
com.hadoop.compression.lzo.LzopCodec
 </value>
</property>
<property>
 <name>io.compression.codec.lzo.class</name>
 <value>com.hadoop.compression.lzo.LzoCodec</value>
</property>

7. Finally, update the following environment variables in your hadoop-env.sh script:
export HADOOP_CLASSPATH=/path/to/hadoop/lib/hadoop-lzo-X.X.XX.jar

export JAVA_LIBRARY_PATH=/path/to/hadoop/lib/native/hadoop-lzo-
native-lib:/path/to/hadoop/lib/native/other-native-libs

Now test the installation of the LZO library.

8. Compress the test dataset:
$ lzop weblog_entries.txt

Chapter 2

45

9. Put the compressed weblog_entries.txt.lzo file into HDFS:
$ hadoop fs –put weblog_entries.txt.lzo /test/weblog_entries.txt.
lzo

10. Run the MapReduce LZO indexer to index the weblog_entries.txt.lzo file:

$ hadoop jar /usr/lib/hadoop/lib/hadoop-lzo-0.4.15.jar com.hadoop.
compression.lzo.DistributedLzoIndexer /test/weblog_entries.txt.lzo

You should now see two files in the /test folder

$ hadoop fs –ls /test

$ /test/weblog_entries.txt.lzo

$ /test/weblog_entries.txt.lzo.index

How it works...
This recipe involved a lot of steps. After we moved the LZO JAR files and native libraries into
place, we updated the io.compression.codecs property in core-site.xml. Both HDFS
and Hadoop MapReduce share this configuration file, and the value of the io.compression.
codecs property will be used to determine which codecs are available to the system.

Finally, we ran DistributedLzoIndexer. This is a MapReduce application that will read
one or more LZO compressed files and index the LZO block boundaries of each file. Once
this application has been run on an LZO file, the LZO file can be split and sent to multiple
mappers by using the included input format LzoTextInputFormat.

There's more...
In addition to DistributedLzoIndexer, the Hadoop LZO library also includes a class
named LzoIndexer. LzoIndexer launches a standalone application to index LZO files
in HDFS. To index the weblog_entries.txt.lzo in HDFS, run the following command:

$ hadoop jar /usr/lib/hadoop/lib/hadoop-lzo-0.4.15.jar com.hadoop.
compression.lzo.LzoIndexer /test/weblog_entries.txt.lzo

See also
 f Using Apache Thrift to serialize data

 f Using Protocol Buffers to serialize data

HDFS

46

Reading and writing data to SequenceFiles
The SequenceFile format is a flexible format included with the Hadoop distribution.
It is capable of storing both text and binary data. SequenceFiles store data as binary
key-value pairs. The binary pairs are then grouped together into blocks. This format
supports compressing the value portion of a record or an entire block of key-value pairs.
SequenceFiles are splittable even when using a compression codec that is not normally
splittable, such as GzipCodec. SequenceFiles are able to do this because individual
values (or blocks) are compressed, not the entire SequenceFile.

This recipe will demonstrate how to write and read to SequenceFiles.

Getting ready
You will need to download the weblog_entries.txt dataset from the Packt website,
http://www.packtpub.com/support. Also, weblog_entries.txt should be
available in HDFS. You can place the weblog_entries.txt file in HDFS using the
Hadoop FS shell as follows:

$ hadoop fs –put /path/on/local/filesystem/weblog_entries.txt /path/in/
hdfs

How to do it...
1. Once you have downloaded the test dataset, we can write an application to read

a plain text file from HDFS and write the contents to a SequenceFile in HDFS
using MapReduce.
public class SequenceWriter extends Configured implements Tool {

 public int run(String[] args) throws Exception {

 Path inputPath = new Path(args[0]);
 Path outputPath = new Path(args[1]);

 Configuration conf = getConf();
 Job weblogJob = new Job(conf);
 weblogJob.setJobName("Sequence File Writer");
 weblogJob.setJarByClass(getClass());
 weblogJob.setNumReduceTasks(0);
 weblogJob.setMapperClass(IdentityMapper.class);
 weblogJob.setMapOutputKeyClass(LongWritable.class);
 weblogJob.setMapOutputValueClass(Text.class);
 weblogJob.setOutputKeyClass(LongWritable.class);
 weblogJob.setOutputValueClass(Text.class);

Chapter 2

47

 weblogJob.setInputFormatClass(TextInputFormat.class);
 weblogJob.setOutputFormatClass(
SequenceFileOutputFormat.class);

 FileInputFormat.setInputPaths(weblogJob, inputPath);
 SequenceFileOutputFormat.setOutputPath(
weblogJob, outputPath);

 if(weblogJob.waitForCompletion(true)) {
 return 0;
 }
 return 1;
 }

 public static void main(String[] args) throws Exception {
 int returnCode = ToolRunner.run(
new SequenceWriter(), args);
 System.exit(returnCode);
 }
}

2. Now, use the MapReduce job to read a SequenceFile from HDFS and transform it
back to normal text:

public class SequenceReader extends Configured implements Tool {

 public int run(String[] args) throws Exception {

 Path inputPath = new Path(args[0]);
 Path outputPath = new Path(args[1]);

 Configuration conf = getConf();
 Job weblogJob = new Job(conf);
 weblogJob.setJobName("Sequence File Reader");
 weblogJob.setJarByClass(getClass());
 weblogJob.setNumReduceTasks(0);
 weblogJob.setMapperClass(IdentityMapper.class);
 weblogJob.setMapOutputKeyClass(LongWritable.class);
 weblogJob.setMapOutputValueClass(Text.class);
 weblogJob.setOutputKeyClass(LongWritable.class);
 weblogJob.setOutputValueClass(Text.class);
 weblogJob.setInputFormatClass(
SequenceFileInputFormat.class);
 weblogJob.setOutputFormatClass(
TextOutputFormat.class);

HDFS

48

 SequenceFileInputFormat.addInputPath(
weblogJob, inputPath);
 FileOutputFormat.setOutputPath(
weblogJob, outputPath);

 if(weblogJob.waitForCompletion(true)) {
 return 0;
 }
 return 1;
 }

 public static void main(String[] args) throws Exception {
 int returnCode = ToolRunner.run(
new SequenceReader(), args);
 System.exit(returnCode);
 }
}

How it works...
MapReduce is an efficient way to transform data in HDFS. These two MapReduce jobs are
very simple to code and are capable of transforming data using the distributed processing
power of the cluster.

First, both MapReduce jobs are "map-only" jobs. This means that Hadoop will launch only
mappers to process the test data. This is achieved by setting the number of reducers to 0,
as shown in the following line of code:

weblogJob.setNumReduceTasks(0);

Next, we want the sequence writer job to read text input and save its output as a
SequenceFile. To do this, the SequenceWriter class sets the input format class to
TextInputFormat.class, as shown in the following line of code:

weblogJob.setInputFormatClass(TextInputFormat.class);

And we also set the output format class to SequenceFileInputFormat.class, as
shown in the following lines of code:

weblogJob.setOutputFormatClass(
SequenceFileOutputFormat.class);

For the next application, we wanted to read a sequence file and write a normal text file.
To do this, we reversed the input and output formats we used for the sequence writer job.

Chapter 2

49

In the sequence reader job, set the input format to read SequenceFiles.

weblogJob.setInputFormatClass(
SequenceFileInputFormat.class);

Set the output format to plain text.

weblogJob.setOutputFormatClass(
TextOutputFormat.class);

There's more...
SequenceFiles have three compression options:

 f Uncompressed: Key-value pairs are stored uncompressed

 f Record compression: The value emitted from a mapper or reducer is compressed

 f Block compression: An entire block of key-value pairs is compressed

You can compress SequenceFiles using the following methods when you set up your job:

SequenceFileOutputFormat.setOutputCompression(job, true);

Next, set the compression option you want to use; the following code sets the record
compression option:

SequenceFileOutputFormat.setOutputCompressionType(weblogJob,
SequenceFile.CompressionType.RECORD);

Or set the block compression option:

SequenceFileOutputFormat.setOutputCompressionType(weblogJob,
SequenceFile.CompressionType.BLOCK);

Finally, choose a compression codec class, for example gzip:

SequenceFileOutputFormat.setOutputCompressorClass(weblogJob,
GzipCodec.class);

See also
In the following recipes, we will continue to explore different data serialization libraries
and formats:

 f Using Apache Avro to serialize data

 f Using Apache Thrift to serialize data

 f Using Protocol Buffers to serialize data

HDFS

50

Using Apache Avro to serialize data
The description from the Apache Avro site defines Avro as a "data serialization system".
Apache Avro supports a language-independent file format and includes serialization and
RPC mechanisms. One of the neat features of Avro is that you do not need to compile any
type of interface or protocol definition files in order to use the serialization features of
the framework.

In this recipe, we will use Avro to serialize and write Java objects to a file in HDFS
using MapReduce.

Getting ready
You will need to download/compile/install the following:

 f Version 1.5.4 of the avro and the avro-mapred JAR files, from
http://avro.apache.org

 f The test data file weblog_entries.txt, from
http://www.packtpub.com/support

How to do it...
1. The following is a Java class that represents a row from the weblog_entries.txt

dataset:
public class WeblogRecord {
 private String cookie;
 private String page;
 private Date date;
 private String ip;

 public WeblogRecord() {

 }
 public WeblogRecord(String cookie, String page, Date date,
String ip) {
 this.cookie = cookie;
 this.page = page;
 this.date = date;
 this.ip = ip;
 }
 //getters and setters

 @Override
 public String toString() {

Chapter 2

51

 return cookie + "\t" + page + "\t" + date.toString() +
"\t" + ip;
 }

}

2. This will be a map-only job, like the job that was created to generate and read
SequenceFiles. However, instead of using IdentityMapper, we will write a
mapper that reads a row from weblog_entries.txt and creates an instance of
WeblogRecord.
public class WeblogMapper extends MapReduceBase implements
Mapper<LongWritable, Text, AvroWrapper, NullWritable> {

 private AvroWrapper<WeblogRecord> outputRecord = new
AvroWrapper<WeblogRecord>();

 private WeblogRecord weblogRecord = new WeblogRecord();

 SimpleDateFormat dateFormatter = new SimpleDateFormat("yyyy-
MM-dd:HH:mm:ss");

 public void map(LongWritable key, Text value,
OutputCollector<AvroWrapper, NullWritable> oc, Reporter rprtr)
throws IOException {

 String[] tokens = value.toString().split("\t");
 String cookie = tokens[0];
 String page = tokens[1];
 String date = tokens[2];
 String time = tokens[3];
 String formattedDate = date + ":" + time;
 Date timestamp = null;
 try {
 timestamp = dateFormatter.parse(formattedDate);
 } catch(ParseException ex) {
 // ignore records with invalid dates
 return;
 }
 String ip = tokens[4];

 weblogRecord.setCookie(cookie);
 weblogRecord.setDate(timestamp);
 weblogRecord.setIp(ip);
 weblogRecord.setPage(page);
 outputRecord.datum(weblogRecord);
 oc.collect(outputRecord, NullWritable.get());
 }

}

HDFS

52

3. Now, use the MapReduce job to read a text file, and then serialize and persist the
WeblogRecord object:

public class AvroWriter extends Configured implements Tool {

 public int run(String[] args) throws Exception {

 Path inputPath = new Path(args[0]);
 Path outputPath = new Path(args[1]);

 Schema schema = ReflectData.get().getSchema(WeblogRecord.
class);

 Configuration conf = getConf();
 JobConf weblogJob = new JobConf(conf, getClass());
 weblogJob.setJobName("Avro Writer");
 weblogJob.setNumReduceTasks(0);
 weblogJob.setMapperClass(WeblogMapper.class);
 weblogJob.setMapOutputKeyClass(AvroWrapper.class);
 weblogJob.setMapOutputValueClass(NullWritable.class);
 weblogJob.setInputFormat(TextInputFormat.class);
 AvroJob.setOutputSchema(weblogJob, schema);
 FileInputFormat.setInputPaths(weblogJob, inputPath);
 FileOutputFormat.setOutputPath(weblogJob, outputPath);

 RunningJob job = JobClient.runJob(weblogJob);
 if(job.isSuccessful()) {
 return 0;
 }
 return 1;
 }

 public static void main(String[] args) throws Exception {
 int returnCode = ToolRunner.run(new AvroWriter(), args);
 System.exit(returnCode);
 }
}

How it works...
The AvroWriter MapReduce job reads a plain text file and serializes the WeblogRecord
class into an Avro file. The first step is to set up a MapReduce job to read the text file and
write the output file using the Avro file format.

Chapter 2

53

Set the input format to read a text file:

weblogJob.setInputFormat(TextInputFormat.class);

Build an Avro schema based on the WeblogRecord class, and then set the output schema:

Schema schema = ReflectData.get().getSchema(WeblogRecord.class);
AvroJob.setOutputSchema(weblogJob, schema);

Next, we use the old Hadoop MapReduce API to write the mapper and emit the
WeblogRecord object by using the AvroWrapper class.

Members emitted of the WeblogMapper class are:

private AvroWrapper<WeblogRecord> outputRecord = new
AvroWrapper<WeblogRecord>();
private WeblogRecord weblogRecord = new WeblogRecord();

Data emitted from the WeblogMapper map() method are:

outputRecord.datum(weblogRecord);
oc.collect(outputRecord, NullWritable.get());

The output of this map-only job is stored in the Avro file format.

There's more...
To read the Avro file format produced by the AvroWriter job, we just need to change
the input format and the mapper class. First, set the input format and the input schema.

JobConf weblogJob = new JobConf(conf, getClass());
Schema schema = ReflectData.get().getSchema(WeblogRecord.class);
AvroJob.setReflect(weblogJob);

Next, create a mapper class with the following definition:

public class WeblogMapperAvro extends MapReduceBase
 implements Mapper<AvroWrapper<WeblogRecord>, NullWritable,
Text, NullWritable>
{
 public void map(AvroWrapper<WeblogRecord> key, NullWritable value,
OutputCollector<Text, NullWritable> oc, Reporter rprtr) throws
IOException {
 WeblogRecord weblogRecord = key.datum();
 //process the web log record
 }
}

HDFS

54

See also
The following recipes will demonstrate additional data serialization libraries that can be
used with Hadoop:

 f Using Apache Thrift to serialize data

 f Using Protocol Buffers to serialize data

Using Apache Thrift to serialize data
Apache Thrift is a cross-language serialization and RPC services framework. Thrift uses
an interface definition file to generate bindings in many languages, including Java.

This recipe demonstrates the defining of a Thrift interface, the generation of the
corresponding Java bindings, and the use of these bindings to serialize a Java object to
HDFS using MapReduce.

Getting ready
You will need to download/compile/install the following:

 f Hadoop LZO library

 f Apache Thrift Version 0.7.0, from http://thrift.apache.org/

 f The latest version of Elephant Bird, from https://github.com/kevinweil/
elephant-bird

 f The test data file weblog_entries.txt, from http://www.packtpub.com/
support

To compile and install Apache Thrift, first ensure that you have all the required
dependencies using Yum:

yum install automake libtool flex bison pkgconfig gcc-c++ boost-devel
libevent-devel zlib-devel python-devel ruby-devel openssl-devel

Next, build Elephant Bird.

$ cd /path/to/elephant-bird

$ ant

Copy the elephant-bird-X.X.X.jar file to the classpath of your development environment.

Chapter 2

55

How to do it...
1. Set up the directory structure.

$ mkdir test-thrift

$ mkdir test-thrift/src

$ mkdir test-thrift/src/thrift

$ mkdir test-thrift/src/java

$ cd test-thrift/src/thrift

2. Next, create an interface definition:
namespace java com.packt.hadoop.hdfs.ch2.thrift

struct WeblogRecord {
 1: optional string cookie,
 2: string page,
 3: i64 timestamp,
 4: string ip
}

Save the file as weblog_record.thrift in the test-thrift/src/thrift/
folder.

3. Compile and generate the .java file:
thrift --gen java -o src/java/ src/thrift/weblog_record.thrift

Thrift should have generated a file named WeblogRecord.java in the src/java/
folder.

4. Now, we will write a MapReduce application to read weblog_entries.txt from
HDFS and use Elephant-Bird's LzoThriftBlockOutputFormat class to serialize
the WeblogRecord object to an LZO compressed file
public class ThriftMapper extends Mapper<Object, Text,
NullWritable, ThriftWritable<WeblogRecord>> {

 private ThriftWritable<WeblogRecord> thriftRecord =
ThriftWritable.newInstance(WeblogRecord.class);
 private WeblogRecord record = new WeblogRecord();
 private SimpleDateFormat dateFormatter = new
SimpleDateFormat("yyyy-MM-dd:HH:mm:ss");

 @Override

HDFS

56

 protected void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
 String[] tokens = value.toString().split("\t");
 String cookie = tokens[0];
 String page = tokens[1];
 String date = tokens[2];
 String time = tokens[3];
 String formatedDate = date + ":" + time;
 Date timestamp = null;
 try {
 timestamp = dateFormatter.parse(formatedDate);
 } catch(ParseException ex) {
 return;
 }
 String ip = tokens[4];
 record.setCookie(cookie);
 record.setPage(page);
 record.setTimestamp(timestamp.getTime());
 record.setIp(ip);
 thriftRecord.set(record);
 context.write(NullWritable.get(), thriftRecord);
 }
}

5. Finally, we will configure the MapReduce job.

public class ThriftWriter extends Configured implements Tool {

 public int run(String[] args) throws Exception {

 Path inputPath = new Path(args[0]);
 Path outputPath = new Path(args[1]);

 Configuration conf = getConf();
 Job weblogJob = new Job(conf);
 weblogJob.setJobName("ThriftWriter");
 weblogJob.setJarByClass(getClass());
 weblogJob.setNumReduceTasks(0);
 weblogJob.setMapperClass(ThriftMapper.class);
 weblogJob.setMapOutputKeyClass(LongWritable.class);
 weblogJob.setMapOutputValueClass(Text.class);
 weblogJob.setOutputKeyClass(LongWritable.class);
 weblogJob.setOutputValueClass(Text.class);
 weblogJob.setInputFormatClass(TextInputFormat.class);
 weblogJob.setOutputFormatClass(

Chapter 2

57

LzoThriftBlockOutputFormat.class);

 FileInputFormat.setInputPaths(weblogJob, inputPath);
 LzoThriftBlockOutputFormat.setClassConf(
WeblogRecord.class, weblogJob.getConfiguration());
 LzoThriftBlockOutputFormat.setOutputPath(weblogJob,
outputPath);

 if (weblogJob.waitForCompletion(true)) {
 return 0;
 }
 return 1;
 }

 public static void main(String[] args) throws Exception {
 int returnCode = ToolRunner.run(
new ThriftWriter(), args);
 System.exit(returnCode);
 }
}

How it works...
The first task required us to define and compile a Thrift interface definition. This definition
file can be used to generate bindings in any language that Thrift supports.

Next, we used Elephant Bird to build a MapReduce application to serialize the
WeblogRecord object that Thrift generated. To set up the MapReduce job, we set the
input format to read a normal text file:

 weblogJob.setInputFormatClass(TextInputFormat.class);

Then the output format was configured to use Thrift block format compression with LZO
to store the output records.

LzoThriftBlockOutputFormat.setClassConf(
WeblogRecord.class, weblogJob.getConfiguration());
 LzoThriftBlockOutputFormat.setOutputPath(weblogJob,
outputPath);

In the mapper, we use the ThriftWritable class of Elephant Bird to wrap
the WeblogRecord object. The ThriftWritable class is derived from the
WritableComparable class of Hadoop, which must be implemented by all the
keys emitted in MapReduce. Every time we generate any type of binding using
Thrift, the ThriftWritable class helps avoid having to write a custom
WritableComparable class.

HDFS

58

In the mapper, we instantiate both ThriftWritable and WeblogRecord instances:

 private ThriftWritable<WeblogRecord> thriftRecord =
 ThriftWritable.newInstance(WeblogRecord.class);
 private WeblogRecord record = new WeblogRecord();

Then, we call the set method of the thriftRecord object with an instance of
WeblogRecord. Finally, the mapper emits the thriftRecord object, which contains an
instance of WeblogRecord.

thriftRecord.set(record);
context.write(NullWritable.get(), thriftRecord);

See also
The following recipe will demonstrate another popular serialization framework developed
by Google:

 f Using Protocol Buffers to serialize Data

Using Protocol Buffers to serialize data
Protocol Buffers is a cross-language data format. Protocol Buffers uses an interface
definition file to generate bindings in many languages, including Java.

This recipe will demonstrate how to define a Protocol Buffers message, generate the
corresponding Java bindings, and use these bindings to serialize a Java object to HDFS
using MapReduce.

Getting ready
You will need to download/compile/install the following:

 f Hadoop LZO library

 f Google Protocol Buffers Version 2.3.0 from http://code.google.com/p/
protobuf/

 f Elephant Bird (see the previous recipe)

 f The test data file weblog_entries.txt, from http://www.packtpub.com/
support

Note that you will need to have a GNU C/C++ compiler collection
installed to compile the protocol buffer source. We will be compiling the
source code for Protocol Buffers.

http://code.google.com/p/protobuf/

Chapter 2

59

To install GNU C/C++ using Yum, run the following command as the root user from a bash shell:

yum install gcc gcc-c++ autoconf automake

To compile and install Protocol Buffers, type the following lines of code:

$ cd /path/to/protobuf

$./configure

$ make

$ make check

make install

ldconfig

How to do it...
1. Set up the directory structure.

$ mkdir test-protobufs

$ mkdir test-protobufs/src

$ mkdir test-protobufs/src/proto

$ mkdir test-protobufs/src/java

$ cd test-protobufs/src/proto

2. Next, create the protocol format.
package example;

option java_package = "com.packt.hadoop.hdfs.ch2";
option java_outer_classname = "WeblogRecord";

message Record {
 optional string cookie = 1;
 required string page = 2;
 required int64 timestamp = 3;
 required string ip = 4;
}

Save the file as weblog_record.proto in the test-protobufs/src/proto/
folder.

3. Compile the protocol format from the test-protobufs folder. WeblogRecord.
java is generated in src/java/ by protoc:
$ cd ../../

$ protoc --proto_path=src/proto/ --java_out=src/java/ src/proto/
weblog_record.proto

HDFS

60

4. Now, we will write a MapReduce application to read weblog_entries.txt
from HDFS and use Elephant Bird's LzoProtobufBlockOutputFormat class
to serialize the WeblogRecord object to an LZO compressed file:
public class ProtobufMapper extends Mapper<Object, Text,
NullWritable, ProtobufWritable<WeblogRecord.Record>> {

 private ProtobufWritable<WeblogRecord.Record> protobufRecord =
ProtobufWritable.newInstance(WeblogRecord.Record.class);
 private SimpleDateFormat dateFormatter = new
SimpleDateFormat("yyyy-MM-dd:HH:mm:ss");

 @Override
 protected void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
 String[] tokens = value.toString().split("\t");
 String cookie = tokens[0];
 String page = tokens[1];
 String date = tokens[2];
 String time = tokens[3];
 String formatedDate = date + ":" + time;
 Date timestamp = null;
 try {
 timestamp = dateFormatter.parse(formatedDate);
 } catch(ParseException ex) {
 return;
 }
 String ip = tokens[4];
 protobufRecord.set(WeblogRecord.Record.newBuilder()
 .setCookie(cookie)
 .setPage(page)
 .setTimestamp(timestamp.getTime())
 .setIp(ip)
 .build());
 context.write(NullWritable.get(), protobufRecord);
 }
}

Chapter 2

61

5. Finally, we will configure the MapReduce job.

public class ProtobufWriter extends Configured implements Tool {

 public int run(String[] args) throws Exception {

 Path inputPath = new Path(args[0]);
 Path outputPath = new Path(args[1]);

 Configuration conf = getConf();
 Job weblogJob = new Job(conf);
 weblogJob.setJobName("ProtobufWriter");
 weblogJob.setJarByClass(getClass());
 weblogJob.setNumReduceTasks(0);
 weblogJob.setMapperClass(ProtobufMapper.class);
 weblogJob.setMapOutputKeyClass(LongWritable.class);
 weblogJob.setMapOutputValueClass(Text.class);
 weblogJob.setOutputKeyClass(LongWritable.class);
 weblogJob.setOutputValueClass(Text.class);
 weblogJob.setInputFormatClass(TextInputFormat.class);
 weblogJob.setOutputFormatClass(
LzoProtobufBlockOutputFormat.class);

 FileInputFormat.setInputPaths(weblogJob, inputPath);
 LzoProtobufBlockOutputFormat.setClassConf(WeblogRecord.
Record.class, weblogJob.getConfiguration());
 LzoProtobufBlockOutputFormat.setOutputPath(weblogJob,
outputPath);

 if(weblogJob.waitForCompletion(true)) {
 return 0;
 }
 return 1;
 }

 public static void main(String[] args) throws Exception {
 int returnCode = ToolRunner.run(
new ProtobufWriter(), args);
 System.exit(returnCode);
 }
}

HDFS

62

How it works...
The first task is to define and compile a Protocol Buffers message definition. This definition
file can be used to generate bindings in any language the Protocol Buffers compiler supports.
There are a couple of things to note about the format of the message.

First, the package definition package example; is not related to Java packages. It is
the namespace of the message defined in the *.proto file. Second, the option java_
package declaration is a Java package definition. Finally, the option java_outer_
classname declaration is the output class name that will be used. Within java_outer_
classname, the Record class will be defined.

Next, we wrote a MapReduce application to serialize the WeblogRecord object generated
by the Protocol Buffers compiler. To set up the MapReduce job, we set the input format to
read a normal text file.

 weblogJob.setInputFormatClass(TextInputFormat.class);

Then, the output format was set to store the records produced from the job in the Protocol
Buffers block format, compressed using LZO.

LzoProtobufBlockOutputFormat.setClassConf(WeblogRecord.Record.class,
weblogJob.getConfiguration());
 LzoProtobufBlockOutputFormat.setOutputPath(weblogJob,
outputPath);

In the mapper, we use the ProtobufWritable class of Elephant Bird to wrap the
WeblogRecord.Record object. The ProtobufWritable class is derived from the
WritableComparable class of Hadoop, which all keys emitted in MapReduce must
implement. Every time we generate any type of binding using protoc, the ProtobufWritable
class helps avoid having to write a custom WritableComparable class.

In the mapper, we instantiate a ProtobufWritable instance.

 private ProtobufWritable<WeblogRecord.Record> protobufRecord =
ProtobufWritable.newInstance(WeblogRecord.Record.class);

Then, we call the set method of the protobufRecord object with a new instance of
WeblogRecord.Record. Finally, the mapper emits the protobufRecord object:

protobufRecord.set(WeblogRecord.Record.newBuilder()
 .setCookie(cookie)
 .setPage(page)
 .setTimestamp(timestamp.getTime())
 .setIp(ip)
 .build());
context.write(NullWritable.get(), protobufRecord);

Chapter 2

63

Setting the replication factor for HDFS
HDFS stores files as data blocks and distributes these blocks across the entire cluster.
As HDFS was designed to be fault-tolerant and to run on commodity hardware, blocks
are replicated a number of times to ensure high data availability. The replication factor is
a property that can be set in the HDFS configuration file that will allow you to adjust the
global replication factor for the entire cluster. For each block stored in HDFS, there will be
n - 1 duplicated blocks distributed across the cluster. For example, if the replication factor
was set to 3 there would be one original block and two replicas.

Getting ready
Open the hdfs-site.xml file. This file is usually found in the conf/ folder of the Hadoop
installation directory.

How to do it...
Change or add the following property to hdfs-site.xml:

<property>
<name>dfs.replication<name>
<value>3<value>
<description>Block Replication<description>
<property>

How it works...
hdfs-site.xml is used to configure HDFS. Changing the dfs.replication property in
hdfs-site.xml will change the default replication for all files placed in HDFS.

There's more...
You can also change the replication factor on a per-file basis using the Hadoop FS shell.

$ hadoop fs –setrep –w 3 /my/file

Alternatively, you can change the replication factor of all the files under a directory.

$ hadoop fs –setrep –w 3 -R /my/dir

HDFS

64

See also
 f The Setting the block size for HDFS recipe in this chapter; it will explain how to set

the block size for HDFS

Setting the block size for HDFS
HDFS was designed to hold and manage large amounts of data; therefore typical HDFS
block sizes are significantly larger than the block sizes you would see for a traditional
filesystem (for example, the filesystem on my laptop uses a block size of 4 KB). The block
size setting is used by HDFS to divide files into blocks and then distribute those blocks
across the cluster. For example, if a cluster is using a block size of 64 MB, and a 128-MB
text file was put in to HDFS, HDFS would split the file into two blocks (128 MB/64 MB)
and distribute the two chunks to the data nodes in the cluster.

Getting ready
Open the hdfs-site.xml file. This file is usually found in the conf/ folder of the Hadoop
installation directory.

How to do it...
Set the following property in hdfs-size.xml:

<property>
<name>dfs.block.size<name>
<value>134217728<value>
<description>Block size<description>
<property>

How it works...
hdfs-site.xml is used to configure HDFS. Changing the dfs.block.size property in
hdfs-site.xml will change the default block size for all the files placed into HDFS. In this
case, we set the dfs.block.size to 128 MB. Changing this setting will not affect the block
size of any files currently in HDFS. It will only affect the block size of files placed into HDFS
after this setting has taken effect.

3
Extracting and

Transforming Data

In this chapter, we will cover:

 f Transforming Apache logs into TSV format using MapReduce

 f Using Apache Pig to filter bot traffic from web server logs

 f Using Apache Pig to sort web server log data by timestamp

 f Using Apache Pig to sessionize web server log data

 f Using Python to extend Apache Pig functionality

 f Using MapReduce and secondary sort to calculate page views

 f Using Hive and Python to clean and transform geographical event data

 f Using Python and Hadoop Streaming to perform a time series analytic

 f Using MultipleOutputs in MapReduce to name output files

 f Creating custom Hadoop Writable and InputFormat to read geographical event data

Introduction
Parsing and formatting large amounts of data to meet business requirements is a challenging
task. The software and the architecture must meet strict scalability, reliability, and run-time
constraints. Hadoop is an ideal environment for extracting and transforming large-scale data.
Hadoop provides a scalable, reliable, and distributed processing environment that is ideal for
large-scale data processing. This chapter will demonstrate methods to extract and transform
data using MapReduce, Apache Pig, Apache Hive, and Python.

Extracting and Transforming Data

66

Transforming Apache logs into TSV format
using MapReduce

MapReduce is an excellent tool for transforming data into tab-separated values (TSV). Once
the input data is loaded into HDFS, the entire Hadoop cluster can be utilized to transform large
datasets in parallel. This recipe will demonstrate the method to extract records from Apache
access logs and store those records as tab-separated values in HDFS.

Getting ready
You will need to download the apache_clf.txt dataset from the support page of the
Packt website, http://www.packtpub.com/support, and place the file in HDFS.

How to do it...
Perform the following steps to transform Apache logs to TSV format using MapReduce:

1. Build a regular expression pattern to parse the Apache combined log format:
private Pattern p = Pattern.compile("^([\\d.]+) (\\S+) (\\S+) \\
[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(\\w+) (.+?) (.+?)\" (\\d+) (\\d+)
\"([^\"]+|(.+?))\" \"([^\"]+|(.+?))\"", Pattern.DOTALL);

2. Create a mapper class to read the log files. The mapper should emit IP address as
the key, and the following as values: timestamp, page, http status, bytes returned to
the client, and the user agent of the client:
public class CLFMapper extends Mapper<Object, Text, Text, Text>{

 private SimpleDateFormat dateFormatter =
 new SimpleDateFormat("dd/MMM/yyyy:HH:mm:ss Z");
 private Pattern p =
 Pattern.compile("^([\\d.]+) (\\S+) (\\S+)"
 + " \\[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(\\w+) (.+?)
(.+?)\" "
 + "(\\d+) (\\d+) \"([^\"]+|(.+?))\"
\"([^\"]+|(.+?))\"",
 Pattern.DOTALL);

 private Text outputKey = new Text();
 private Text outputValue = new Text();
 @Override
 protected void map(Object key, Text value, Context
 context) throws IOException, InterruptedException {
 String entry = value.toString();

http://www.packtpub.com/support

Chapter 3

67

 Matcher m = p.matcher(entry);
 if (!m.matches()) {
 return;
 }
 Date date = null;
 try {
 date = dateFormatter.parse(m.group(4));
 } catch (ParseException ex) {
 return;
 }
 outputKey.set(m.group(1)); //ip
 StringBuilder b = new StringBuilder();
 b.append(date.getTime()); //timestamp
 b.append('\t');
 b.append(m.group(6)); //page
 b.append('\t');
 b.append(m.group(8)); //http status
 b.append('\t');
 b.append(m.group(9)); //bytes
 b.append('\t');
 b.append(m.group(12)); //useragent
 outputValue.set(b.toString());
 context.write(outputKey, outputValue);
 }

}

3. Now, create a map-only job to apply the transformation:
public class ParseWeblogs extends Configured implements Tool {

 public int run(String[] args) throws Exception {

 Path inputPath = new Path(args[0]);
 Path outputPath = new Path(args[1]);

 Configuration conf = getConf();
 Job weblogJob = new Job(conf);
 weblogJob.setJobName("Weblog Transformer");
 weblogJob.setJarByClass(getClass());
 weblogJob.setNumReduceTasks(0);
 weblogJob.setMapperClass(CLFMapper.class);
 weblogJob.setMapOutputKeyClass(Text.class);
 weblogJob.setMapOutputValueClass(Text.class);
 weblogJob.setOutputKeyClass(Text.class);

Extracting and Transforming Data

68

 weblogJob.setOutputValueClass(Text.class);
 weblogJob.setInputFormatClass(TextInputFormat.class);
 weblogJob.setOutputFormatClass(TextOutputFormat.class);

 FileInputFormat.setInputPaths(weblogJob, inputPath);
 FileOutputFormat.setOutputPath(weblogJob, outputPath);

 if(weblogJob.waitForCompletion(true)) {
 return 0;
 }
 return 1;
 }

 public static void main(String[] args) throws Exception {
 int returnCode = ToolRunner.run(new ParseWeblogs(), args);
 System.exit(returnCode);
 }

}

4. Finally, launch the MapReduce job:

$ hadoop jar myjar.jar com.packt.ch3.etl.ParseWeblogs /user/
hadoop/apache_clf.txt /user/hadoop/apache_clf_tsv

How it works...
We first created a mapper that was responsible for the extraction of the desired information
we from the Apache weblogs and for emitting the extracted fields in a tab-separated format.

Next, we created a map-only job to transform the web server log data into a tab-separated
format. The key-value pairs emitted from the mapper were stored in a file in HDFS.

There's more...
By default, the TextOutputFormat class uses a tab to separate the key and value
pairs. You can change the default separator by setting the mapred.textoutputformat.
separator property. For example, to separate the IP and the timestamp by a ',', we could
re-run the job using the following command:

$ hadoop jar myjar.jar com.packt.ch3.etl.ParseWeblogs -Dmapred.
textoutputformat.separator=',' /user/hadoop/apache_clf.txt /user/hadoop/
csv

Chapter 3

69

See also
The tab-separated output from this recipe will be used in the following recipes:

 f Using Apache Pig to filter bot traffic from web server logs

 f Using Apache Pig to sort web server log data by timestamp

 f Using Apache Pig to sessionize web server log data

 f Using Python to extend Apache Pig functionality

 f Using MapReduce and secondary sort to calculate page views

Using Apache Pig to filter bot traffic from
web server logs

Apache Pig is a high-level language for creating MapReduce applications. This recipe will
use Apache Pig and a Pig user-defined filter function (UDF) to remove all bot traffic from a
sample web server log dataset. Bot traffic is the non-human traffic that visits a webpage,
such as spiders.

Getting ready
You will need to download/compile/install the following:

 f Version 0.8.1 or better of Apache Pig from http://pig.apache.org/

 f Test data: apache_tsv.txt and useragent_blacklist.txt from the support
page on the Packt website, http://www.packtpub.com/support

 f Place apache_tsv.txt in HDFS and put useragent_blacklist.txt in your
current working directory

How to do it...
Carry out the following steps to filter bot traffic using an Apache Pig UDF:

1. First, write a Pig UDF that extends the Pig FilterFunc abstract class. This class
will be used to filter records in the weblogs dataset by using the user agent string.
public class IsUseragentBot extends FilterFunc {

 private Set<String> blacklist = null;

 private void loadBlacklist() throws IOException {
 blacklist = new HashSet<String>();
 BufferedReader in = new BufferedReader(new

Extracting and Transforming Data

70

 FileReader("blacklist"));
 String userAgent = null;
 while ((userAgent = in.readLine()) != null) {
 blacklist.add(userAgent);
 }
 }

 @Override
 public Boolean exec(Tuple tuple) throws IOException {
 if (blacklist == null) {
 loadBlacklist();
 }
 if (tuple == null || tuple.size() == 0) {
 return null;
 }

 String ua = (String) tuple.get(0);
 if (blacklist.contains(ua)) {
 return true;
 }
 return false;
 }

}

2. Next, create a Pig script in your current working directory. At the beginning of the
Pig script, give the MapReduce framework the path to useragent_blacklist.txt
in HDFS:
set mapred.cache.files '/user/hadoop/blacklist.txt#blacklist';

set mapred.create.symlink 'yes';

3. Register the JAR file containing the IsUseragentBot class with Pig, and write the
Pig script to filter the weblogs by the user agent:

register myudfjar.jar;

all_weblogs = LOAD '/user/hadoop/apache_tsv.txt' AS (ip:
chararray, timestamp:long, page:chararray, http_status:int,
payload_size:int, useragent:chararray);

Chapter 3

71

nobots_weblogs = FILTER all_weblogs BY NOT com.packt.ch3.etl.pig.
IsUseragentBot(useragent);

STORE nobots_weblogs INTO '/user/hadoop/nobots_weblogs';

To run the Pig job, put myudfjar.jar into the same folder as the Pig script and execute it.

$ ls

$ myudfjar.jar filter_bot_traffic.pig

$ pig –f filter_bot_traffic.pig

How it works...
Apache Pig is extendable through the use of user-defined functions (UDF). One way to create
a UDF is through the use of the Java abstract classes and interfaces that come with the
Apache Pig distribution. In this recipe, we wanted to remove all records that contain known
bot user agent strings. One way to do this is to create our own Pig filter.

The IsUseragentBot class extends the abstract class FilterFunc, which allows us
to override the exec(Tuple t) method. A Pig Tuple is an ordered list of fields that can
be any Pig primitive, or null. At runtime, Pig will feed the exec(Tuple t) method of the
IsUseragentBot class with the user agent strings from our dataset. The UDF will extract
the user agent string by accessing the first field in the Tuple, and it will return true if we
find the user agent string is a bot, otherwise the UDF returns false.

In addition, the IsUseragentBot UDF reads a file called blacklist and loads the
contents into a HashSet instance. The file named blacklist is a symbolic link to
blacklist.txt, which has been distributed to the nodes in the cluster using the
distributed cache mechanism. To place a file into the distributed cache, and to create
the symbolic link, set the following MapReduce properties:

set mapred.cache.files '/user/hadoop/blacklist.txt#blacklist';
set mapred.create.symlink 'yes';

It is important to note that these properties are not Pig properties. These properties are used
by the MapReduce framework, so you can use these properties to load a file to the distributed
cache for any MapReduce job.

Next, we told Pig where to find the JAR file containing the IsUseragentBot UDF:

register myudfjar.jar;

Finally, we call the UDF using the Java class name. When the job runs, Pig will instantiate an
instance of the IsUseragentBot class and feed the exec(Tuple t) method with records
from the all_weblogs relation.

Extracting and Transforming Data

72

There's more...
Starting in Pig Version 0.9, Pig UDFs can access the distributed cache without setting
the mapred.cache.files and mapred.create.symlink properties. Most abstract
Pig classes that used to create UDFs now have a method named List<String>
getCacheFiles() that can be overridden to load files from HDFS into the distributed
cache. For example, the IsUseragentBot class can be modified to load the blacklist.
txt file to the distributed cache by adding the following method:

@Override
public List<String> getCacheFiles() {
 List<String> list = new ArrayList<String>();
 list.add("/user/hadoop/blacklist.txt#blacklist");
 return list;
}

See also
Apache Pig will be used with the following recipes in this chapter:

 f Using Apache Pig to sort web server log data by timestamp

 f Using Apache Pig to sessionize web server log data

 f Using Python to extend Apache Pig functionality

 f Using MapReduce and secondary sort to calculate page views

Using Apache Pig to sort web server log
data by timestamp

Sorting data is a common data transformation technique. In this recipe, we will demonstrate
the method of writing a simple Pig script to sort a dataset using the distributed processing
power of the Hadoop cluster.

Getting ready
You will need to download/compile/install the following:

 f Version 0.8.1 or better of Apache Pig from http://pig.apache.org/

 f Test data: apache_nobots_tsv.txt from http://www.packtpub.com/
support

Chapter 3

73

How to do it...
Perform the following steps to sort data using Apache Pig:

1. First load the web server log data into a Pig relation:
nobots_weblogs = LOAD '/user/hadoop/apache_nobots_tsv.txt' AS
(ip: chararray, timestamp:long, page:chararray, http_status:int,
payload_size:int, useragent:chararray);

2. Next, order the web server log records by the timestamp field in the
ascending order:
ordered_weblogs = ORDER nobots BY timestamp;

3. Finally, store the sorted results in HDFS:
STORE ordered_weblogs INTO '/user/hadoop/ordered_weblogs';\

4. Run the Pig job:

$ pig –f ordered_weblogs.pig

How it works...
Sorting data in a distributed, share-nothing environment is non-trivial. The Pig relational
operator ORDER BY has the capability to provide total ordering of a dataset. This means
any record that appears in the output file part-00000, will have a timestamp less than
the timestamp in the output file part-00001 (since our data was sorted by timestamp).

There's more...
The Pig ORDER BY relational operator sorts data by multiple fields, and also supports sorting
data in the descending order. For example, to sort the nobots relationship by the ip and
timestamp fields, we would use the following expression:

ordered_weblogs = ORDER nobots BY ip, timestamp;

To sort the nobots relationship by timestamp in the descending order, use the desc option:

ordered_weblogs = ORDER nobots timestamp desc;

See also
The following recipes will use Apache Pig:

 f Using Apache Pig to sessionize web server log data

 f Using Python to extend Apache Pig functionality

 f Using MapReduce and secondary sort to calculate page views

Extracting and Transforming Data

74

Using Apache Pig to sessionize web server
log data

A session represents a user's continuous interaction with a website, and the user session
ends when an arbitrary activity timeout has occurred. A new session begins once the user
returns to the website after a period of inactivity. This recipe will use Apache Pig and a Pig
user-defined function (UDF) to generate a subset of records from apache_nobots_tsv.txt
that marks the beginning of a session for a specific IP.

Getting ready
You will need to download/compile/install the following:

 f Version 0.8.1 or better of Apache Pig from http://pig.apache.org/

 f Test data: apache_nobots_tsv.txt from http://www.packtpub.com/
support

How to do it...
The following are the steps to create an Apache Pig UDF to sessionize web server log data:

1. Start by creating a Pig UDF to emit only the first record of a session. The UDF extends
the Pig abstract class EvalFunc and implements the Pig interface, Accumulator.
This class is responsible for applying the session logic on the web server log dataset:
public class Sessionize extends EvalFunc<DataBag> implements
Accumulator<DataBag> {

 private long sessionLength = 0;
 private Long lastSession = null;
 private DataBag sessionBag = null;

 public Sessionize(String seconds) {
 sessionLength = Integer.parseInt(seconds) * 1000;
 sessionBag = BagFactory.getInstance().newDefaultBag();
 }

 @Override
 public DataBag exec(Tuple tuple) throws IOException {
 accumulate(tuple);

Chapter 3

75

 DataBag bag = getValue();
 cleanup();
 return bag;
 }

 @Override
 public void accumulate(Tuple tuple) throws IOException {
 if (tuple == null || tuple.size() == 0) {
 return;
 }
 DataBag inputBag = (DataBag) tuple.get(0);
 for(Tuple t: inputBag) {
 Long timestamp = (Long)t.get(1);
 if (lastSession == null) {
 sessionBag.add(t);
 }
 else if ((timestamp - lastSession) >= sessionLength) {
 sessionBag.add(t);
 }
 lastSession = timestamp;
 }
 }

 @Override
 public DataBag getValue() {
 return sessionBag;
 } @Override
 public void cleanup() {
 lastSession = null;
 sessionBag = BagFactory.getInstance().newDefaultBag();
 }
}

2. Next, create a Pig script to load and group the web server log records by IP address:
register myjar.jar;
define Sessionize com.packt.ch3.etl.pig.Sessionize('1800'); /* 30
minutes */

nobots_weblogs = LOAD '/user/hadoop/apache_nobots_tsv.txt' AS
(ip: chararray, timestamp:long, page:chararray, http_status:int,
payload_size:int, useragent:chararray);

ip_groups = GROUP nobots_weblogs BY ip;

Extracting and Transforming Data

76

3. Finally, write the Pig expression to order all of the records associated with a specific
IP by timestamp. Then, send the ordered records to the Sessionize UDF:
sessions = FOREACH ip_groups {
 ordered_by_timestamp = ORDER nobots_weblogs BY
timestamp;
 GENERATE FLATTEN(Sessionize(ordered_by_
timestamp));
 }

STORE sessions INTO '/user/jowens/sessions';

4. Copy the JAR file containing the Sessionize class to the current working directory,
and run the Pig script:

$ pig –f sessionize.pig

How it works...
We first created a UDF that extended the EvalFunc abstract class and implemented the
Accumulator interface. The EvalFunc class is used to create our own function that can
be used within a Pig script. Data will be passed to the UDF via the exec(Tuple t) method,
where it is processed. The Accumulator interface is optional for custom eval functions,
and allows Pig to optimize the data flow and memory utilization of the UDF. Instead of passing
the whole dataset, similar to how the EvalFunc class works, the Accumulator interface
allows for subsets of the data to be passed to the UDF.

Next, we wrote a Pig script to group all of the web server log records by IP, and sort the
records by timestamp. We need the data sorted by timestamp because the Sessionize
UDF uses the sorted order of the timestamps to determine the start of each session.

Then, we generated all of the sessions associated with a specific IP by calling the
Sessionize alias.

Finally, we used the FLATTEN operator to unnest the Tuples in the DataBags emitted from
the UDF.

See also
 f Using Python to extend Apache Pig functionality

Chapter 3

77

Using Python to extend Apache Pig
functionality

In this recipe, we will use Python to create a simple Apache Pig user-defined function (UDF)
to count the number of records in a Pig DataBag.

Getting ready
You will need to download/compile/install the following:

 f Jython 2.5.2 from http://www.jython.org/

 f Version 0.8.1 or better of Apache Pig from http://pig.apache.org/

 f Test data: apache_nobots_tsv.txt from http://www.packtpub.com/
support

This recipe requires the Jython standalone JAR file. To build the file, download the Jython java
installer, run the installer, and select Standalone from the installation menu.

$ java –jar jython_installer-2.5.2.jar

Add the Jython standalone JAR file to Apache Pig's classpath:

$ export PIG_CLASSPATH=$PIG_CLASSPATH:/path/to/jython2.5.2/jython.jar

How to do it...
The following are the steps to create an Apache Pig UDF using Python:

1. Start by creating a simple Python function to count the number of records in a
Pig DataBag:
#!/usr/bin/python

@outputSchema("hits:long")
def calculate(inputBag):
 hits = len(inputBag)
 return hits

Extracting and Transforming Data

78

2. Next, create a Pig script to group all of the web server log records by IP and page.
Then send the grouped web server log records to the Python function:

register 'count.py' using jython as count;

nobots_weblogs = LOAD '/user/hadoop/apache_nobots_tsv.txt' AS
(ip: chararray, timestamp:long, page:chararray, http_status:int,
payload_size:int, useragent:chararray);

ip_page_groups = GROUP nobots_weblogs BY (ip, page);

ip_page_hits = FOREACH ip_page_groups GENERATE FLATTEN(group),
count.calculate(nobots_weblogs);

STORE ip_page_hits INTO '/user/hadoop/ip_page_hits';

How it works...
First, we created a simple Python function to calculate the length of a Pig DataBag. In addition,
the Python script contained the Python decorator, @outputSchema("hits:long"), that
instructs Pig on how to interpret the data returned by the Python function. In this case,
we want Pig to store the data returned by this function as a Java Long in a field named hits.

Next, we wrote a Pig script that registers the Python UDF using the statement:

register 'count.py' using jython as count;

Finally, we called the calculate() function using the alias count, in the Pig DataBag:

count.calculate(nobots_weblogs);

Using MapReduce and secondary sort to
calculate page views

In a typical MapReduce job, key-value pairs are emitted from the mappers, shuffled, and
sorted, and then finally passed to the reducers. There is no attempt by the MapReduce
framework to sort the values passed to the reducers for processing. However, there are
cases when we need the values passed to the reducers to be sorted, such as in the case
of counting page views.

To calculate page views, we need to calculate distinct IPs by page. One way to calculate this is
to have the mappers emit the key-value pairs: page and IP. Then, in the reducer, we can store
all of the IPs associated with a page in a set. However, this approach is not scalable. What
happens if the weblogs contain a large number of distinct IPs visiting a single page? We might
not be able to fit the entire set of distinct IPs in memory.

Chapter 3

79

The MapReduce framework provides a way to work around this complication. In this recipe,
we will write a MapReduce application that allows us to sort the values going to a reducer
using an approach known as the secondary sort. Instead of holding all of the distinct IPs in
memory, we can keep track of the last IP we saw while processing the values in the reducer,
and we can maintain a counter to calculate distinct IPs.

Getting ready
You will need to download the apache_nobots_tsv.txt dataset from
http://www.packtpub.com/support and place the file into HDFS.

How to do it...
The following steps show how to implement a secondary sort in MapReduce to calculate
page views:

1. Create a class that implements the Hadoop WritableComparable interface.
We will use this class to store the key and sort fields:
public class CompositeKey implements WritableComparable {

 private Text first = null;
 private Text second = null;

 public CompositeKey() {

 }

 public CompositeKey(Text first, Text second) {
 this.first = first;
 this.second = second;
 }

 //...getters and setters

 public void write(DataOutput d) throws IOException {
 first.write(d);
 second.write(d);
 }

Extracting and Transforming Data

80

 public void readFields(DataInput di) throws IOException {
 if (first == null) {
 first = new Text();
 }
 if (second == null) {
 second = new Text();
 }
 first.readFields(di);
 second.readFields(di);
 }

 public int compareTo(Object obj) {
 CompositeKey other = (CompositeKey) obj;
 int cmp = first.compareTo(other.getFirst());
 if (cmp != 0) {
 return cmp;
 }
 return second.compareTo(other.getSecond());
 }

 @Override
 public boolean equals(Object obj) {
 CompositeKey other = (CompositeKey)obj;
 return first.equals(other.getFirst());
 }

 @Override
 public int hashCode() {
 return first.hashCode();
 }
}

2. Next, write the Mapper and Reducer classes. The Mapper class will use the
CompositeKey class to store two fields. The first will be the page field, which is
used to group and partition the data leaving the mapper. The second is the ip field,
which is used to sort the values passed to the reducer.
public class PageViewMapper extends Mapper<Object, Text,
CompositeKey, Text> {
 private CompositeKey compositeKey = new CompositeKey();
 private Text first = new Text();
 private Text second = new Text();
 private Text outputValue = new Text();
 @Override

Chapter 3

81

 protected void map(Object key, Text value, Context
 context) throws IOException, InterruptedException {
 String[] tokens = value.toString().split("\t");
 if (tokens.length > 3) {
 String page = tokens[2];
 String ip = tokens[0];
 first.set(page);
 second.set(ip);
 compositeKey.setFirst(first);
 compositeKey.setSecond(second);
 outputValue.set(ip);
 context.write(compositeKey, outputValue);
 }
 }
}

public class PageViewReducer extends Reducer<CompositeKey, Text,
Text, LongWritable> {
 private LongWritable pageViews = new LongWritable();

 @Override
 protected void reduce(CompositeKey key, Iterable<Text>
 values, Context context)
 throws IOException, InterruptedException {
 String lastIp = null;
 long pages = 0;
 for(Text t : values) {
 String ip = t.toString();
 if (lastIp == null) {
 lastIp = ip;
 pages++;
 }
 else if (!lastIp.equals(ip)) {
 lastIp = ip;
 pages++;
 }
 else if (lastIp.compareTo(ip) > 0) {
 throw new IOException("secondary sort failed");
 }
 }
 pageViews.set(pages);
 context.write(key.getFirst(), pageViews);
 }
}

Extracting and Transforming Data

82

3. Create three classes to partition, group, and sort the data leaving the mapper. These
classes are used by the MapReduce framework. First, write a class to partition the
data emitted from the mapper by the page field:
static class CompositeKeyParitioner extends
Partitioner<CompositeKey, Writable> {

 @Override
 public int getPartition(CompositeKey key, Writable value,
int numParition) {
 return (key.getFirst().hashCode() & 0x7FFFFFFF) %
numParition;
 }
 }

4. Next, write a Comparator that will group all of the keys together:
static class GroupComparator extends WritableComparator {
 public GroupComparator() {
 super(CompositeKey.class, true);
 }

 @Override
 public int compare(WritableComparable a,
WritableComparable b) {
 CompositeKey lhs = (CompositeKey)a;
 CompositeKey rhs = (CompositeKey)b;
 return lhs.getFirst().compareTo(rhs.getFirst());
 }
 }

5. Write a second Comparator that will sort the values passed to the reducer:
static class SortComparator extends WritableComparator {
 public SortComparator() {
 super(CompositeKey.class, true);
 }

 @Override
 public int compare(WritableComparable a,
WritableComparable b) {
 CompositeKey lhs = (CompositeKey)a;
 CompositeKey rhs = (CompositeKey)b;
 int cmp = lhs.getFirst().compareTo(rhs.getFirst());
 if (cmp != 0) {
 return cmp;
 }

Chapter 3

83

 return lhs.getSecond().compareTo(rhs.getSecond());
 }
 }

6. Finally, write the code to set up a normal MapReduce job, but tell the MapReduce
framework to use our own partitioner and comparator classes:

public int run(String[] args) throws Exception {

 Path inputPath = new Path(args[0]);
 Path outputPath = new Path(args[1]);

 Configuration conf = getConf();
 Job weblogJob = new Job(conf);
 weblogJob.setJobName("PageViews");
 weblogJob.setJarByClass(getClass());
 weblogJob.setMapperClass(PageViewMapper.class);
 weblogJob.setMapOutputKeyClass(CompositeKey.class);
 weblogJob.setMapOutputValueClass(Text.class);

 weblogJob.setPartitionerClass(CompositeKeyParitioner.
class);
 weblogJob.setGroupingComparatorClass(GroupComparator.
class);
 weblogJob.setSortComparatorClass(SortComparator.class);

 weblogJob.setReducerClass(PageViewReducer.class);
 weblogJob.setOutputKeyClass(Text.class);
 weblogJob.setOutputValueClass(Text.class);
 weblogJob.setInputFormatClass(TextInputFormat.class);
 weblogJob.setOutputFormatClass(TextOutputFormat.class);

 FileInputFormat.setInputPaths(weblogJob, inputPath);
 FileOutputFormat.setOutputPath(weblogJob, outputPath);

 if(weblogJob.waitForCompletion(true)) {
 return 0;
 }
 return 1;
 }

Extracting and Transforming Data

84

How it works...
We first created a class named CompositeKey. This class extends the Hadoop
WritableComparable interface so that we can use the CompositeKey class just like any
normal Hadoop WritableComparable interface (for example, Text and IntWritable).
The CompositeKey class holds two Text objects. The first Text object is used to partition
and group the key-value pairs emitted from the mapper. The second Text object is used to
perform the secondary sort.

Next, we wrote a mapper class to emit the key-value pair CompositeKey (which consists
of page and IP) as the key, and IP as the value. In addition, we wrote a reducer class that
receives a CompositeKey object and a sorted list of IPs. The distinct IP count is calculated
by incrementing a counter whenever we see an IP that does not equal a previously seen IP.

After writing the mapper and reducer classes, we created three classes to partition, group,
and sort the data. The CompositeKeyPartitioner class is responsible for partitioning the
data emitted from the mapper. In this recipe, we want all of the same pages to go to the same
partition. Therefore, we calculate the partition location based only on the first field of the
CompositeKey class.

Next, we created a GroupComparator class that uses the same logic as
CompositeKeyPartitioner. We want all of the same page keys grouped together for
processing by a reducer. Therefore, the group comparator only inspects the first member of
the CompositeKey class for comparison.

Finally, we created the SortComparator class. This class is responsible for sorting all
of the values that are sent to the reducer. As you can see from the method signature,
compare(WritableComparable a, WritableComparable b), we only receive the keys
that are sent to each reducer, which is why we needed to include the IP with each and every key
the mapper emitted. The SortComparator class compares both the first and second members
of the CompositeKey class to ensure that the values a reducer receives are sorted.

See also
 f Creating custom Hadoop Writable and InputFormat to read geographical event data

Using Hive and Python to clean and
transform geographical event data

This recipe uses certain operators in Hive to input/output data through a custom Python
script. The script performs a few simple pruning operations over each row, and outputs a
slightly modified version of the row into a Hive table.

Chapter 3

85

Getting ready
You will need to download/compile/install the following:

 f Version 0.7.1 of Apache Hive from http://hive.apache.org/

 f Test data: Nigeria_ACLED.csv, Nigeria_ACLED_cleaned.tsv from http://
www.packtpub.com/support

 f Python 2.7 or greater

This recipe requires the Nigera_ACLED.csv file to be loaded into a Hive table named
acled_nigeria with the following fields mapped to the respective data types.

Issue the following command to the Hive client:

describe acled_nigeria

You should see the following response:

OK

loc string

event_date string

year string

event_type string

actor string

latitude double

longitude double

source string

fatalities string

How to do it...
Follow these steps to use Python and Hive to transform data:

1. Create a file named clean_and_transform_acled.hql in your local working
directory and add the inline creation and transformation syntax:
SET mapred.child.java.opts=-Xmx512M;

DROP TABLE IF EXISTS acled_nigeria_cleaned;
CREATE TABLE acled_nigeria_cleaned (
 loc STRING,
 event_date STRING,
 event_type STRING,

http://hive.apache.org/
http://hive.apache.org/

Extracting and Transforming Data

86

 actor STRING,
 latitude DOUBLE,
 longitude DOUBLE,
 source STRING,
 fatalities INT
) ROW FORMAT DELIMITED;

ADD FILE ./clean_acled_nigeria.py;
INSERT OVERWRITE TABLE acled_nigeria_cleaned
 SELECT TRANSFORM(
 if(loc != "", loc, 'Unknown'),
 event_date,
 year,
 event_type,
 actor,
 latitude,
 longitude,
 source,
 if(fatalities != "", fatalities, 'ZERO_FLAG'))
 USING 'python clean_acled_nigeria.py'
 AS (loc, event_date, event_type, actor, latitude, longitude,
source, fatalities)
 FROM acled_nigeria;

2. Next, create another file named clean_acled_nigeria.py in the same working
directory as clean_and_transform_acled.hql and add the following Python
code to read from stdin:
#!/usr/bin/env python
import sys

for line in sys.stdin:
 (loc, event_date, year, event_type, actor, lat, lon, src,
fatalities) = line.strip().split('\t')
 if loc != 'LOCATION': #remove header row
 if fatalities == 'ZERO_FLAG':
 fatalities = '0'
 print '\t'.join([loc, event_date, event_type, \ actor, lat,
lon, src, fatalities]) #strip out year

Chapter 3

87

It is important to note that Python is sensitive to inconsistent
indentation. Be careful if you are copying and pasting Python code.

3. Run the script from the operating system shell by supplying the –f option to the
Hive client:
$ hive –f clean_and_transform_acled.hql

4. To verify that the script finished properly, run the following command using the –e
option to the Hive client.

hive –e "select count(1) from acled_nigeria_cleaned"

Hive should count 2931 rows.

How it works...
Let's start with the Hive script that we created. The first line is simply to force a certain
JVM heap size in our execution. You can set this to any size that may be appropriate for
your cluster. For the ACLED Nigeria dataset, a 512 MB memory is more than enough.

Immediately following this, we drop any tables with the name acled_nigeria_cleaned
and create a table by the same name. We can omit the fields delimited by ',' and rows
delimited by '\n' since they are the default field and row delimiters assumed by ROW
FORMAT, and the ACLED Nigeria data is in that format.

Once we have our receiving table defined, we need to define the SELECT statement that will
transform and output the data. The common convention is to add scripts required by SELECT
before the statement. The command ADD FILE ./clean_acled_nigeria.py tells Hive
to load the script from the local filesystem into the distributed cache for use by the
MapReduce tasks.

The SELECT statement uses the Hive TRANSFORM operator to separate each column
by tabs and to cast all columns as String with nulls as '\n'. The columns loc and
fatalities are conditionally checked for empty strings; and if found to be empty, are
set to a default value.

We specify the USING operator to provide a custom script to work with the TRANSFORM
operator. Hive requires that scripts that make a call to the USING operator for row
transformation need to first invoke TRANSFORM with the appropriate columns. If the file has
been placed on the distributed cache, and each node in the cluster has Python installed, the
MapReduce JVM tasks will be able to execute the script and read the rows in parallel. The AS
operator contains a list of named fields corresponding to the columns found in the receiving
Hive table, acled_nigeria_cleaned.

Extracting and Transforming Data

88

The Python script is very straightforward. The #!/usr/bin/env python statement is a hint
to tell the shell how to execute the script. Each row from the table is passed in as a line over
standard input. The call to strip() method removes any leading/trailing whitespace, and
then we tokenize it into an array of named variables. Each field from the row is put in a named
variable. The raw ACLED Nigeria data was used to create the input Hive table, and contains a
header row we wish to discard. The first condition will check for 'LOCATION' as the value of
loc, which indicates the header row we want to ignore.

If the row passes this check, we look for the presence of 'ZERO_FLAG' as the value for
fatalities, which we set in our Hive script. If the script detects this value for fatalities,
we set the value of fatalities to the string '0'.

Finally, we output each field excluding year in the same order as it was input. Each row will
be placed into the table acled_nigeria_cleaned.

There's more...
There is a lot going on in this recipe. The following are a few additional explanations that
will help you with Hive TRANSFORM/USING/AS operations and ETL in general.

Making every column type String
This is a bit counterintuitive and certainly not found anywhere in the Hive documentation. If
your initial Hive staging table for the incoming data maps each delimited field as a string, it
will aid tremendously in data validation and debugging. You can use the Hive STRING type to
successfully represent almost any input into a cleansing script or direct Hive QL statement.
Trying to perfectly map datatypes over expected values is not flexible to an erroneous input.
There may be malformed characters for fields where you expect numeric values, and other
similar hang-ups that make it impossible to perform certain analytics. Using strings over
the raw data fields will allow a custom script to inspect the invalid data and decide how to
respond. Moreover, when dealing with CSV or tab-separated data, a slightly misaligned INT
or FLOAT type mapping in your Hive table declaration, where the data has a STRING, could
lead to NULL mappings per row. String mappings for every field in the raw table will show you
column misalignment failures such as these, very quickly. This is just a matter of preference,
and only applies to tables designed for holding the raw or dirty input for immediate validation
and transformation into other Hive tables.

Type casing values using the AS keyword
This recipe only outputs strings from the Python script for use over standard output. Hive will
attempt to cast them to the appropriate type in the receiving table. The advantage to this
is the time and coding space saved by not having to explicitly cast every field with the AS
operator. The disadvantage is that this will not fail should a value be cast to an incompatible
type. For instance, outputting HI THERE to a numeric field will insert NULL for the field value
for that row. This can lead to undesirable behavior for subsequent SELECT statements over
the table.

Chapter 3

89

Testing the script locally
This one is pretty self-explanatory. It is much easier to debug your script directly on the
command line than it is across MapReduce task error logs. It likely will not prevent you from
having to troubleshoot issues dealing with scale or data validity, but it will eliminate a large
majority of the compile time and control flow issues.

Using Python and Hadoop Streaming to
perform a time series analytic

This recipe shows how to use Hadoop Streaming with Python to perform a basic time series
analysis over the cleansed ACLED Nigeria dataset. The program is designed to output a list
of dates in sorted order for each location where the government in Nigeria regained territory.

For this recipe, we will use structured Nigerian conflict data provided by Armed Conflict
Location and Event dataset collections team.

Getting ready
You will need to download/compile/install the following:

 f Version 0.7.1 of Apache Pig from http://hive.apache.org/

 f Test data: download Nigeria_ACLED_cleaned.tsv from http://www.
packtpub.com/support and place the file into HDFS

 f Python 2.6 or greater

How to do it...
The following are the steps to use Python with Hadoop Streaming:

1. Create a shell script named run_location_regains.sh that runs the Streaming
job. It is important to change the streaming JAR path to match the absolute path of
your hadoop-streaming.jar file. The path of the hadoop-streaming.jar file
is different depending on the Hadoop distribution:
#!/bin/bash

$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/contrib/streaming/hadoop-
streaming-0.20.2-cdh3u1.jar \

 -input /input/acled_cleaned/Nigeria_ACLED_cleaned.tsv \

 -output /output/acled_analytic_out \

 -mapper location_regains_mapper.py \

 -reducer location_regains_by_time.py \

 -file location_regains_by_time.py \

http://hive.apache.org/

Extracting and Transforming Data

90

 -file location_regains_mapper.py \

 -jobconf stream.num.map.output.key.fields=2 \

 -jobconf map.output.key.field.separator=\t \

 -jobconf num.key.fields.for.partition=1 \

 -jobconf mapred.reduce.tasks=1

2. Create a Python file named location_regains_mapper.py and add the following:
#!/usr/bin/python
import sys

for line in sys.stdin:
 (loc, event_date, event_type, actor, lat, lon, src,
fatalities) = line.strip().split('\t');
 (day,month,year) = event_date.split('/')
 if len(day) == 1:
 day = '0' + day
 if len(month) == 1:
 month = '0' + month;
 if len(year) == 2:
 if int(year) > 30 and int(year) < 99:
 year = '19' + year
 else:
 year = '20' + year
 event_date = year + '-' + month + '-' + day
 print '\t'.join([loc, event_date, event_type]);

3. Create a Python file named location_regains_by_time.py and add the
following:
#!/usr/bin/python
import sys

current_loc = "START_OF_APP"
govt_regains=[]
for line in sys.stdin:
 (loc,event_date,event_type) = line.strip('\n').split('\t')
 if loc != current_loc:
 if current_loc != "START_OF_APP":
 print current_loc + '\t' + '\t'.join(govt_regains)
 current_loc = loc
 govt_regains = []
 if event_type.find('regains') != -1:
 govt_regains.append(event_date)

Chapter 3

91

4. Run the shell script from the local working directory, which should contain all of the
Python scripts that we created previously:

./run_location_regains.sh

You should see the job start from the command line and finish successfully:

INFO streaming.StreamJob: Output: /output/acled_analytic_out

How it works...
The shell script sets up the Hadoop Streaming JAR path and passes the necessary arguments
to the program. Each argument is explained in detail as follows:

Argument Description
-input /input/acled_cleaned/
Nigeria_ACLED_cleaned.tsv \

The HDFS path to the input data for
MapReduce.

-output /output/acled_analytic_
out \

The HDFS path for MapReduce to write the
job output.

-mapper location_regains_mapper.
py \

Script to be run as the map function; records
passed via STDIN/STDOUT.

-reducer location_regains_by_
time.py \

Script to be run as the reduce function.

-file location_regains_by_time.
py \

Add a file to the distributed cache. This is
required for external scripts.

-file location_regains_mapper.
py \

Add a file to the distributed cache.

-jobconf stream.num.map.output.
key.fields=2 \

Tells the streaming tool which field/fields
should be treated as the map output key.
Our mapper outputs three fields per record.
This parameter tells the program to treat the
first two as the key. This will leverage the
secondary sort feature in MapReduce to sort
our rows based on the composite of these
two fields.

-jobconf map.output.key.field.
separator=\t \

Parameter for setting the delimiter token on
the key.

-jobconf num.key.fields.for.
partition=1 \

Guarantees that all of the map output records
with the same value in the first field of the
key are sent to the same reducer.

-jobconf mapred.reduce.tasks=1 Number of JVM tasks to reduce over the
output keys.

Extracting and Transforming Data

92

The Python script used in the map phase gets a line corresponding to each record. We call
strip() to remove any leading/trailing whitespace and then split the line on tabs. The result
is an array of variables descriptively named to the row fields they hold.

The event_date field in the raw input requires some processing. In order for the framework
to sort records in ascending order of dates, we want to take the current form, which is dd/
mm/yy and convert it to yyyy-mm-dd. Since some of the events occurred before the year
2000, we need to expand the year variable out to four digits. Single-digit days and months
are zero-padded, so that it sorts correctly.

This analytics only requires location, event_date, and event_type to be output to the
reduce stage. In the shell script, we specified the first two fields as the output key. Specifying
location as the first field groups all records with the same location on a common reducer.
Specifying event_date as the second field allows the MapReduce framework to sort the
records by the composite of location and event_date. The value in each key-value pair
is simply of the event_type field.

Sample map output:

(cityA, 2010-08-09, explosion)
(cityB, 2008-10-10, fire)
(cityA, 2009-07-03, riots)

Order reducer shows the records that are sorted on the composite value of location and
event_date

(cityA, 2009-07-03, riots)
(cityA, 2010-08-09,explosion)
(cityB, 2008-10-10,fire)

Our configuration specifies only one reducer, so in this recipe all of the rows will partition to
the same reduce Java Virtual Machine (JVM). If multiple reduce tasks are specified, cityA
and cityB could be processed independently on separate reduce JVMs.

Understanding how the MapReduce framework sorts and handles the output of the
location_regains_mapper.py file is important to determine how the reduce script works.

We use location_regains_by_time.py to iterate over the sorted collection of events per
location, and aggregate events that match a particular type.

As the records were partitioned by location, we can assume that each partition will go to its
own mapper. Furthermore, because we specified event_date as an additional sort column,
we can make the assumption that the events corresponding to a given location are sorted by
date in the ascending order. Now we are in a position to understand how the script works.

Chapter 3

93

The script must keep a track of when a loc input changes from the previous location. Such a
change signifies that we are done processing the previous location, since they are all in sorted
order. We initialize the current_loc flag to START_OF_APP. We also declare an empty array
govt_regains to hold the dates of events we are interested in.

The program starts by processing each line into variables. If there is a change in loc and it is
not the beginning of the application, we know to output the current govt_regains collection
to standard out. The change means that we are done processing the previous location, and
can safely write its collection of event dates out of the reducer.

If the incoming loc value is the same as current_loc, we know that the incoming event
still corresponds to the location we are currently processing. We check to see if the event is
of the type regains to show the government the regained territories in that region. If it
matches that type, we add it to the current govt_regains collection. Since the incoming
records are sorted by event_date, we are guaranteed that the records are inserted in
govt_regains in the ascending order of dates.

The net result is a single part file that is output from the reducer with a list of locations in
lexicographically sorted order. To the right-hand side of each location is a tab-separated
sorted list of dates matching the occurrences of when the government regained territory
in that location.

There's more...
Hadoop Streaming is a very popular component. The following are a few important
additions to know:

Using Hadoop Streaming with any language that can read from
stdin and write to stdout
You are not limited to just Python when working with Hadoop Streaming. Java classes, shell
scripts, ruby scripts, and many other languages are frequently used to transition existing code
and functionality into full-fledged MapReduce programs. Any language that can read stdin
and write to stdout will work with Hadoop Streaming.

Using the –file parameter to pass additional required files for
MapReduce jobs
Similar to normal MapReduce programs, you can pass additional dependencies over the
distributed cache to be used in your applications. Simply add additional –file parameters.
For example:

-file mapper.py \

-file wordlist.txt

Extracting and Transforming Data

94

Using MultipleOutputs in MapReduce to
name output files

A common request among MapReduce users is to control output file names to something
other than part-*. This recipe shows how you can use the MultipleOutputs class to
emit different key-value pairs to the same named file that you chose.

Getting ready
You will need to download the ip-to-country.txt dataset from the Packt website,
http://www.packtpub.com/support, and place the file in HDFS.

How to do it...
Follow these steps to use MultipleOutputs:

1. Create a class named NamedCountryOutputJob and configure the
MapReduce job:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.io.IOException;
import java.util.regex.Pattern;

public class NamedCountryOutputJob implements Tool{

http://www.packtpub.com/
http://www.packtpub.com/

Chapter 3

95

 private Configuration conf;
 public static final String NAME = "named_output";

 public static void main(String[] args) throws Exception {
 ToolRunner.run(new Configuration(), new
NamedCountryOutputJob(), args);
 }
 public int run(String[] args) throws Exception {
 if(args.length != 2) {
 System.err.println("Usage: named_output <input>
<output>");
 System.exit(1);
 }

 Job job = new Job(conf, "IP count by country to named
files");
 job.setInputFormatClass(TextInputFormat.class);

 job.setMapperClass(IPCountryMapper.class);
 job.setReducerClass(IPCountryReducer.class);

 job.setMapOutputKeyClass(Text.class);
 job.setMapOutputValueClass(IntWritable.class);
 job.setJarByClass(NamedCountryOutputJob.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 return job.waitForCompletion(true) ? 1 : 0;

 }

 public void setConf(Configuration conf) {
 this.conf = conf;
 }

 public Configuration getConf() {
 return conf;
 }

Extracting and Transforming Data

96

2. Create a mapper to emit the key-value pair country, and the number 1:
public static class IPCountryMapper
 extends Mapper<LongWritable, Text, Text, IntWritable>
{

 private static final int country_pos = 1;
 private static final Pattern pattern = Pattern.
compile("\\t");

 @Override
 protected void map(LongWritable key, Text value,
 Context context) throws IOException,
InterruptedException {
 String country = pattern.split(value.toString())
[country_pos];
 context.write(new Text(country), new IntWritable(1));
 }
 }

3. Create a reducer that sums all of the country counts, and writes the output to
separate files using MultipleOutputs:

public static class IPCountryReducer
 extends Reducer<Text, IntWritable, Text, IntWritable>
{

 private MultipleOutputs output;

 @Override
 protected void setup(Context context
) throws IOException, InterruptedException {
 output = new MultipleOutputs(context);
 }

 @Override
 protected void reduce(Text key, Iterable<IntWritable>
values, Context context) throws IOException, InterruptedException
{
 int total = 0;
 for(IntWritable value: values) {
 total += value.get();
 }
 output.write(new Text("Output by MultipleOutputs"),

Chapter 3

97

 NullWritable.get(), key.toString());
 output.write(key, new IntWritable(total), key.
toString());
 }

 @Override
 protected void cleanup(Context context
) throws IOException, InterruptedException {
 output.close();
 }
 }

Once the job completes successfully, you should see named output files under the provided
output directory (for example, Qatar-r-#####, Turkey-r-#####).

How it works...
We first set up our job using the Tool interface provided by Hadoop. The run() method
inside NamedCountryOutputJob checks that both input and output HDFS path directories
are provided. In addition, both the mapper and reducer classes are set, and we configure the
InputFormat to read lines of text.

The mapper class defines a statically initialized position to read the country from each line,
as well as the regex pattern to split each line. The mapper will output the country as the key
and 1 for every line it appears on.

At the reduce phase, each task JVM runs the setup() routine and initializes a
MultipleOutputs instance named output.

Each call to reduce() presents a country and a tally of every occurrence of the country
appearing in the dataset. We sum the tally into a final count. Before we emit the final count,
we will use the output instance to write a header to the file. The key contains the text for the
header Output by MultipleOutputs, and we null out the value since we don't need
it. We specify key.toString() to write the header to a custom file named by the current
country. On the next line we call output.write() again, except this time with the input key
as the output key, the final count as the output value, and the key.toString() method to
specify the same output file as the previous output.write() method.

The end result is a named country file containing both the header and the final tallied count
for that country.

By using MultipleOutputs, we don't have to configure an OutputFormat class in our job
setup routine. Also, we are not limited to just one concrete type for the reducer output key
and value. We were able to output key-value pairs for both Text/NullWritable and Text/
IntWritable to the exact same file.

Extracting and Transforming Data

98

Creating custom Hadoop Writable and
InputFormat to read geographical event data

When reading input, or writing output from a MapReduce application, it is sometimes easier
to work with data using an abstract class instead of the primitive Hadoop Writable classes
(for example, Text and IntWritable). This recipe demonstrates how to create a custom
Hadoop Writable and InputFormat that can be used by MapReduce applications.

Getting ready
You will need to download the Nigeria_ACLED_cleaned.tsv dataset from
http://www.packtpub.com/support and place the file into HDFS.

How to do it...
Follow these steps to create custom InputFormat and Writable classes:

1. First we will define two custom WritableComparable classes. These classes
represent the key-value pairs that are passed to the mapper, much as how
TextInputFormat passes LongWritable and Text to the mapper.

Write the key class:

public class GeoKey implements WritableComparable {
 private Text location;
 private FloatWritable latitude;
 private FloatWritable longitude;
 public GeoKey() {
 location = null;
 latitude = null;
 longitude = null;
 }

 public GeoKey(Text location, FloatWritable latitude,
 FloatWritable longitude) {
 this.location = location;
 this.latitude = latitude;
 this.longitude = longitude;
 }

 //...getters and setters

http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 3

99

 public void readFields(DataInput di) throws IOException {
 if (location == null) {
 location = new Text();
 }
 if (latitude == null) {
 latitude = new FloatWritable();
 }
 if (longitude == null) {
 longitude = new FloatWritable();
 }
 location.readFields(di);
 latitude.readFields(di);
 longitude.readFields(di);
 }
 public int compareTo(Object o) {
 GeoKey other = (GeoKey)o;
 int cmp = location.compareTo(other.location);
 if (cmp != 0) {
 return cmp;
 }
 cmp = latitude.compareTo(other.latitude);
 if (cmp != 0) {
 return cmp;
 }
 return longitude.compareTo(other.longitude);
 }

}

2. Now, the value class:
public class GeoValue implements WritableComparable {
 private Text eventDate;
 private Text eventType;
 private Text actor;
 private Text source;
 private IntWritable fatalities;

 public GeoValue() {
 eventDate = null;
 eventType = null;
 actor = null;
 source = null;
 fatalities = null;
 }

Extracting and Transforming Data

100

 //...getters and setters

 public void write(DataOutput d) throws IOException {
 eventDate.write(d);
 eventType.write(d);
 actor.write(d);
 source.write(d);
 fatalities.write(d);
 }

 public void readFields(DataInput di) throws IOException {
 if (eventDate == null) {
 eventDate = new Text();
 }
 if (eventType == null) {
 eventType = new Text();
 }
 if (actor == null) {
 actor = new Text();
 }
 if (source == null) {
 source = new Text();
 }
 if (fatalities == null) {
 fatalities = new IntWritable();
 }
 eventDate.readFields(di);
 eventType.readFields(di);
 actor.readFields(di);
 source.readFields(di);
 fatalities.readFields(di);
 }

 public int compareTo(Object o) {
 GeoValue other = (GeoValue)o;
 int cmp = eventDate.compareTo(other.eventDate);
 if (cmp != 0) {
 return cmp;
 }
 cmp = eventType.compareTo(other.eventType);
 if (cmp != 0) {
 return cmp;
 }
 cmp = actor.compareTo(other.actor);

Chapter 3

101

 if (cmp != 0) {
 return cmp;
 }
 cmp = source.compareTo(other.source);
 if (cmp != 0) {
 return cmp;
 }
 return fatalities.compareTo(other.fatalities);
 }

}

3. Next, we need to create an InputFormat to serialize the text from our input file and
create the GeoKey and GeoValue instances. This input format extends the Hadoop
FileInputFormat class and returns our own implementation of a RecordReader:
public class GeoInputFormat extends FileInputFormat<GeoKey,
GeoValue> {

 @Override
 public RecordReader<GeoKey, GeoValue>
createRecordReader(InputSplit split, TaskAttemptContext context) {
 return new GeoRecordReader();
 }

 @Override
 protected boolean isSplitable(JobContext context, Path file) {
 CompressionCodec codec =
 new CompressionCodecFactory(context.
getConfiguration()).getCodec(file);
 return codec == null;
 }
}

4. Now, create a RecordReader to read from the Nigeria_ACLED_cleaned.tsv
dataset:
public class GeoRecordReader extends RecordReader<GeoKey,
GeoValue> {

 private GeoKey key;
 private GeoValue value;
 private LineRecordReader reader = new LineRecordReader();
 @Override
 public void initialize(InputSplit is, TaskAttemptContext tac)
throws IOException, InterruptedException {
 reader.initialize(is, tac);

Extracting and Transforming Data

102

 }

 @Override
 public boolean nextKeyValue() throws IOException,
InterruptedException {

 boolean gotNextKeyValue = reader.nextKeyValue();
 if(gotNextKeyValue) {
 if (key == null) {
 key = new GeoKey();
 }
 if (value == null) {
 value = new GeoValue();
 }
 Text line = reader.getCurrentValue();
 String[] tokens = line.toString().split("\t");
 key.setLocation(new Text(tokens[0]));
 key.setLatitude(new FloatWritable(Float.
parseFloat(tokens[4])));
 key.setLongitude(new FloatWritable(Float.
parseFloat(tokens[5])));

 value.setActor(new Text(tokens[3]));
 value.setEventDate(new Text(tokens[1]));
 value.setEventType(new Text(tokens[2]));
 try {
 value.setFatalities(new IntWritable(Integer.
parseInt(tokens[7])));
 } catch(NumberFormatException ex) {
 value.setFatalities(new IntWritable(0));
 }
 value.setSource(new Text(tokens[6]));
 }
 else {
 key = null;
 value = null;
 }
 return gotNextKeyValue;
 }

 @Override
 public GeoKey getCurrentKey() throws IOException,
InterruptedException {
 return key;
 }

Chapter 3

103

 @Override
 public GeoValue getCurrentValue() throws IOException,
InterruptedException {
 return value;
 }
 @Override
 public float getProgress() throws IOException,
InterruptedException {
 return reader.getProgress();
 }
 @Override
 public void close() throws IOException {
 reader.close();
 }

}

5. Finally, create a simple map-only job to test the InputFormat:

public class GeoFilter extends Configured implements Tool {

 public static class GeoFilterMapper extends Mapper<GeoKey,
GeoValue, Text, IntWritable> {
 @Override
 protected void map(GeoKey key, GeoValue value, Context
context) throws IOException, InterruptedException {
 String location = key.getLocation().toString();
 if (location.toLowerCase().equals("aba")) {
 context.write(value.getActor(),
 value.getFatalities());
 }
 }
 }

 public int run(String[] args) throws Exception {

 Path inputPath = new Path(args[0]);
 Path outputPath = new Path(args[1]);

 Configuration conf = getConf();
 Job geoJob = new Job(conf);
 geoJob.setNumReduceTasks(0);
 geoJob.setJobName("GeoFilter");
 geoJob.setJarByClass(getClass());
 geoJob.setMapperClass(GeoFilterMapper.class);

Extracting and Transforming Data

104

 geoJob.setMapOutputKeyClass(Text.class);
 geoJob.setMapOutputValueClass(IntWritable.class);
 geoJob.setInputFormatClass(GeoInputFormat.class);
 geoJob.setOutputFormatClass(TextOutputFormat.class);

 FileInputFormat.setInputPaths(geoJob, inputPath);
 FileOutputFormat.setOutputPath(geoJob, outputPath);

 if(geoJob.waitForCompletion(true)) {
 return 0;
 }
 return 1;
 }

 public static void main(String[] args) throws Exception {
 int returnCode = ToolRunner.run(new GeoFilter(), args);
 System.exit(returnCode);
 }
}

How it works...
The first task was to define our own Hadoop key and value representations by
implementing the WritableComparable interface. The WritableComparable
interface allows us to create our own abstract types, which can be used as keys or
values by the MapReduce framework.

Next, we created an InputFormat that inherits from the FileInputFormat class.
The Hadoop FileInputFormat is the base class for all file-based InputFormats. The
InputFormat takes care of managing the input files for a MapReduce job. Since we do not
want to change the way in which our input files are split and distributed across the cluster,
we only need to override two methods, createRecordReader() and isSplitable().

The isSplitable() method is used to instruct the FileInputFormat class that it is
acceptable to split up the input files if there is a codec available in the Hadoop environment
to read and split the file. The createRecordReader() method is used to create a Hadoop
RecordReader that processes individual file splits and generates a key-value pair for the
mappers to process.

After the GeoInputFormat class was written, we wrote a RecordReader to process
the individual input splits and create GeoKey and GeoValue for the mappers. The
GeoRecordReader class reused the Hadoop LineRecordReader class to read from
the input split. When the LineRecordReader class completed reading a record from
the Nigeria_ACLED_cleaned.tsv dataset, we created two objects. These objects
are GeoKey and GeoValue, which are sent to the mapper.

4
Performing Common

Tasks Using Hive, Pig,
and MapReduce

In this chapter we will cover:

 f Using Hive to map an external table over weblog data in HDFS

 f Using Hive to dynamically create tables from the results of a weblog query

 f Using the Hive string UDFs to concatenate fields in weblog data

 f Using Hive to intersect weblog IPs and determine the country

 f Generating n-grams over news archives using MapReduce

 f Using the distributed cache in MapReduce to find lines that contain matching
keywords over news archives

 f Using Pig to load a table and perform a SELECT operation with GROUP BY

Introduction
When working with Apache Hive, Pig, and MapReduce, you may find yourself having
to perform certain tasks frequently. The recipes in this chapter provide solutions for
executing several very common routines.

You will find that these tools let you solve the same problems in numerous different ways.
Deciding on the right implementation can be a difficult task. The recipes presented here
were designed for coding efficiency and clarity.

Performing Common Tasks Using Hive, Pig, and MapReduce

106

Hive and Pig provide a clean abstraction layer between your data flow and meaningful
queries, and the complex MapReduce workflows they compile to. You can leverage the power
of MapReduce for scalable queries without having to think about the underlying MapReduce
semantics. Both tools handle the decomposition and building of your expressions into the
proper MapReduce sequences. Hive lets you build analytics and manage data using a
declarative, SQL-like dialect known as HiveQL. Pig operations are written in Pig Latin and
take a more imperative form.

Using Hive to map an external table over
weblog data in HDFS

You will often want to create tables over existing data that does not live within the managed
Hive warehouse in HDFS. Creating a Hive external table is one of the easiest ways to handle
this scenario. Queries from the Hive client will execute as they normally do over internally
managed tables.

Getting ready
Make sure you have access to a pseudo-distributed or fully-distributed Hadoop cluster,
with Apache Hive 0.7.1 installed on your client machine and on the environment path for the
active user account. This recipe depends on having the weblog_entries dataset loaded
into an HDFS directory at the absolute path /input/weblog/weblog_records.txt.

How to do it...
Carry out the following steps to map an external table in HDFS:

1. Open a text editor of your choice, ideally one with SQL syntax highlighting. I have
used the Textmate text editor for this recipe.

2. Add the CREATE TABLE syntax, as follows:
DROP TABLE IF EXISTS weblog_entries;
CREATE EXTERNAL TABLE weblog_entries (
 md5 STRING,
 url STRING,
 request_date STRING,
 request_time STRING,
 ip STRING
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY
'\n'
LOCATION '/input/weblog/';

Chapter 4

107

3. Save the script as weblog_create_external_table.hsql in the working
directory.

4. Run the script from the operating system shell by supplying the –f option to the
Hive client, as follows:
hive –f weblog_create_external_table.hql

5. You should see two successful commands issued to the Hive client.

OK

Time taken: 2.654 seconds

OK

Time taken: 0.473 seconds

How it works...
The existing definition of the table weblog_entries is deleted if it already exists. Following
this, the script issues a CREATE command with the EXTERNAL keyword, which tells the Hive
Metastore that the data is not managed by the Hive warehouse in HDFS.

The table is defined as having five fields per entry. The MD5 of the URL, the URL itself, the
date of the request, the exact time of the request, and the IP address that the request was
associated with.

ROW FORMAT DELIMITED uses the native Hive SerDe, which is Hive's extensible and internal
serialization/deserialization mechanism for reading and writing raw data. We explicitly tell
the SerDe that a tab character separates each field and a newline character separates each
record. The LOCATION keyword is required by Hive when creating an external table. It points
to the HDFS directory that contains the table data using an absolute path.

There's more...
There are a few handy tips that you need to know when working with external tables.

LOCATION must point to a directory, not a file
As of Hive release 0.7.1, the LOCATION keyword requires an absolute path to a directory
in HDFS.

Dropping an external table does not delete the data stored in
the table
Unlike a managed table in Hive, the DROP command only deletes the table entry from
the Metastore and not the physical data in HDFS. Other applications that depend on data
stored in the supplied HDFS directory will continue to operate normally.

Performing Common Tasks Using Hive, Pig, and MapReduce

108

You can add data to the path specified by LOCATION
If new data is inserted into a directory specified in an external table's LOCATION attribute,
the data will be visible to any subsequent queries performed on the table.

Using Hive to dynamically create tables
from the results of a weblog query

This recipe will outline a shorthand technique for inline table creation when the query is
executed. Having to create every table definition up front is impractical and does not scale
for large ETL. Being able to dynamically define intermediate tables is tremendously useful
for complex analytics with multiple staging points.

In this recipe, we will create a new table that contains three fields from the weblog entry
dataset, namely request_date, request_time, and url. In addition to this, we will
define a new field called url_length.

Getting ready
Make sure you have access to a pseudo-distributed or fully-distributed Hadoop cluster,
with Apache Hive 0.7.1 installed on your client machine and on the environment path for
the active user account.

This recipe depends on having the weblog_entries dataset loaded into Hive table
named weblog_entries with the following fields mapped to the respective datatypes.

Issue the following command to the Hive client:

describe weblog_entries

You should see the following response:

OK

md5 string

url string

request_date string

request_time string

ip string

How to do it...
Carry out the following steps to create an inline table definition using an alias:

1. Open a text editor of your choice, ideally one with SQL syntax highlighting.

Chapter 4

109

2. Add the following inline creation syntax:
CREATE TABLE weblog_entries_with_url_length AS
SELECT url, request_date, request_time, length(url) as url_length
FROM weblog_entries;

3. Save the script as weblog_entries_create_table_as.hql in the active
directory.

4. Run the script from the operating system shell by supplying the –f option to the Hive
client, as follows:
hive –f weblog_create_table_as.hql

5. To verify that the table was created successfully, issue the following command to the
Hive client directly, using the –e option:
hive –e "describe weblog_entries_with_url_length"

6. You should see a table with three string fields and a fourth int field holding the
URL length:

OK

url string

request_date string

request_time string

url_length int

How it works...
The following statement initially defines a new table by the name weblog_entries_with_
url_length:

CREATE TABLE weblog_entries_with_url_length AS

We then define the body of this table as an alias to the result set of a nested SELECT
statement. In this case, our SELECT statement simply grabs the url, request_date, and
request_time fields from each entry in the weblog_entries table. The field names are
copied as field names to our new table weblog_entires_with_url_length. We also
defined an additional field aliased as url_length to be calculated for each selected record.
It stores an int value that represents the number of characters in the record's url field.

SELECT url, request_date, request_time, length(url) as url_length FROM
weblog_entries;

In one simple statement, we created a table with a subset of fields from our starting table, as
well as a new derived field.

Performing Common Tasks Using Hive, Pig, and MapReduce

110

There's more...
The following are a few reminders for when using external tables:

CREATE TABLE AS cannot be used to create external tables
As of Apache Hive 0.7.1, you cannot create external tables using aliases with
SELECT statements.

DROP temporary tables
The ease of the CREATE TABLE AS syntax lets Hive users create new tables very quickly,
but don't forget to DROP any temporary tables. If you are scripting the CREATE ALIAS
for repeated use, the next execution, especially, will fail if there are table name conflicts.
Moreover, such intermediate tables will create a warehouse namespace that will quickly
become unmanageable.

Using the Hive string UDFs to concatenate
fields in weblog data

String concatenation is a very common operation in any development task. It frequently
comes up when using Hive for report generation and even simple ETL tasks. This recipe
will show a very basic and useful example using one of the Hive string concatenation UDFs.

In this recipe, we will take the separate request_date and request_time fields from
the weblog_entries and print a single concatenated column to the console for every
record, containing both the request_date and request_time fields separated by
an underscore (_).

Getting ready
Make sure you have access to a pseudo-distributed or fully-distributed Hadoop cluster,
with Apache Hive 0.7.1 installed on your client machine and on the environment path for
the active user account.

This recipe depends on having the weblog_entries dataset loaded into a Hive table
named weblog_entries with the following fields mapped to the respective datatypes.

Issue the following command to the Hive client:

describe weblog_entries

Chapter 4

111

You should see the following response:

OK

md5 string

url string

request_date string

request_time string

ip string

How to do it...
Carry out the following steps to perform string concatenation in HiveQL:

1. Open a text editor of your choice, ideally one with SQL syntax highlighting.

2. Add the following inline creation syntax:
SELECT concat_ws('_', request_date, request_time) FROM weblog_
entries;

3. Save the script as weblog_concat_date_time.hql in the active directory.

4. Run the script from the operating system shell by supplying the –f option to the
Hive client. You should see the results of the SELECT statement printed out to the
console. The following snippet is an example that contains only two sample rows.
The full printout will contain all 3000 rows.

2012-05-10_21:33:26
2012-05-10_21:13:10

How it works...
The script relies on the Hive built-in UDF to concatenate two strings together with a supplied
separator token. For each row, it supplies the function with the respective request_date
and request_time values that correspond to that row. The output of the function is a single
string containing both the fields separated by an underscore (_). Since the SELECT statement
consists of only that function, and the function outputs just a single string, we see a single
column for all 3000 rows, one printed per line.

There's more...
The following are a few additional notes to help with the concat_ws() function:

Performing Common Tasks Using Hive, Pig, and MapReduce

112

The UDF concat_ws() function will not automatically cast
parameters to String
If you pass non-string datatypes as parameters to concat_ws(), you will be greeted with
a very descriptive error message:

FAILED: Error in semantic analysis: Line 1:21 Argument type mismatch
field1: Argument 2 of function CONCAT_WS must be "string", but "int"
was found.

If you wish to encapsulate the auto-casting of your parameters to string, use the regular
concat() function.

Alias your concatenated field
Like most Hive UDFs, you can alias the output of concat_ws(). This comes in handy if you
are persisting the results of the concatenation and want a very descriptive column header.

The concat_ws() function supports variable length parameter
arguments
When using concat_ws(), you must, at the very least, supply the separator character first
and one input string parameter to be printed out. However, you are not limited in the number
of input string parameters that you can supply to be concatenated and separated.

The following usage is valid:

concat_ws('_','test')

The following output will be printed to the console:

test

The following usage of the concat_ws() function is also valid:

concat_ws('_','hi','there','my','name','is')

The following output will be printed to the console:

hi_there_my_name_is

See also
 f The following recipes in Chapter 6, Big Data Analysis:

 � Using Hive date UDFs to transform and sort event dates from geographic
event data

 � Using Hive to build a per-month report of fatalities over geographic
event data

Chapter 4

113

Using Hive to intersect weblog IPs and
determine the country

Hive does not directly support foreign keys. Nevertheless, it is still very common to join
records on identically matching keys contained in one or more tables. This recipe will show
a very simple inner join over weblog data that links each request record in the weblog_
entries table to a country, based on the request IP.

For each record contained in the weblog_entries table, the query will print the record
out with an additional trailing value showing the determined country.

Getting ready
Make sure that you have access to a pseudo-distributed or fully-distributed Hadoop cluster,
with Apache Hive 0.7.1 installed on your client machine and on the environment path for the
active user account.

This recipe depends on having the weblog_entries dataset loaded into a Hive table
named weblog_entries with the following fields mapped to the respective datatypes.

Issue the following command to the Hive client:

describe weblog_entries

You should see the following response:

OK

md5 string

url string

request_date string

request_time string

ip string

Additionally, this recipe requires that the ip-to-country dataset be loaded into a Hive
table named ip_to_country with the following fields mapped to the respective datatypes.

Issue the following command to the Hive client:

describe ip_to_country

You should see the following response:

OK

Ip string

country string

Performing Common Tasks Using Hive, Pig, and MapReduce

114

How to do it...
Carry out the following steps to perform an inner join in HiveQL:

1. Open a text editor of your choice, ideally one with SQL syntax highlighting.

2. Add the following inline creation syntax:
SELECT wle.*, itc.country FROM weblog_entries wle
 JOIN ip_to_country itc ON wle.ip = itc.ip;

3. Save the script as weblog_simple_ip_join.hql in the active directory.

4. Run the script from the operating system shell by supplying the –f option to the
Hive client. You should see the results of the SELECT statement printed out to the
console. The following snippet is a printout containing only two sample rows. The full
printout will contain all 3000 rows:

11402ba8f780f7fbfb108f213449e1b9 /u.html 2012-05-10 21:19:05
98.90.200.33 United States
7ffb8f8ed136c5fe3a5dd6eedc32eae7 /cx.html 2012-05-10 21:17:05
59.19.27.24 Korea, Republic of

How it works...
The statement SELECT wle.* tells Hive to print every column for each record contained
in the table weblog_entires, which is an alias for wle in shorthand.

Additionally, the JOIN operator tells Hive to perform a lookup in the ip_to_country table
for each record, and find the specific country that maps to that weblog record's IP address.
In other words, our join key is the IP address contained in both the tables.

There's more...
The following are a few more helpful introductory tips for the Hive JOIN syntax.

Hive supports multitable joins
A single SELECT statement can use multiple instances of the JOIN <table> ON syntax
to match the conditions contained in multiple tables.

The ON operator for inner joins does not support
inequality conditions
As of Hive 0.7.1, ON conditions cannot match records based on inequality.

The same query from the recipe will fail once the conditional operator is changed to inequality.

Chapter 4

115

The following is the same query from the recipe, except that we wish to match every record for
which the IP does not match an IP in the JOIN table:

SELECT wle.*, itc.country FROM weblog_entries wle
 JOIN ip_to_country itc ON wle.ip != itc.ip;

This query produces the following error:

FAILED: Error in semantic analysis: Line 2:30 Both left and right
aliases encountered in JOIN ip

See also
This recipe is designed as a quick reference for simple table joins. More advanced Hive joins
are covered in depth in the following recipes of Chapter 5, Advanced Joins:

 f Joining data in the Mapper using MapReduce

 f Joining data using Apache Pig replicated join

 f Join sorted data using Apache Pig merge join

 f Using a map-side join in Apache Hive to analyze geographical events

Generating n-grams over news archives
using MapReduce

n-gram analysis is one approach for looking at blocks of free text that analyze contiguous
words (grams) together in a sequence. This recipe will demonstrate how to use the Java
MapReduce API to calculate n-grams over news archives. Some of the code listed in this
recipe will be useful across a variety of different MapReduce jobs. It includes code for the
ToolRunner setup, custom parameter passing via configuration, and automatic output
directory removal before job submission.

Getting ready
This recipe assumes you have a basic familiarity with the Hadoop 0.20 MapReduce API and
the general concept of n-gram calculations. You will need access to the news_archives.
zip dataset supplied with this book. Inside the ZIP file, you will find the rural.txt and
science.txt files. Place both in a single HDFS directory.

You will need access to a pseudo-distributed or fully-distributed cluster capable of running
MapReduce jobs using the newer MapReduce API introduced in Hadoop 0.20.

You will also need to package this code inside a JAR file that is to be executed by the Hadoop
JAR launcher from the shell. Only the core Hadoop libraries are required to compile and run
this example.

Performing Common Tasks Using Hive, Pig, and MapReduce

116

How to do it...
Carry out the following steps to implement n-gram in MapReduce:

1. Create a class named NGram.java in your JAR file at whatever source package
is appropriate.

2. The first step involves creating your concrete Tool class for job submission.
The methods are implemented as follows:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.io.IOException;
import java.util.regex.Pattern;

public class NGramJob implements Tool{

 private Configuration conf;

 public static final String NAME = "ngram";
 private static final String GRAM_LENGTH = "number_of_
grams";

 public void setConf(Configuration conf) {
 this.conf = conf;
 }

 public Configuration getConf() {
 return conf;
 }

Chapter 4

117

 public static void main(String[] args) throws Exception {
 if(args.length != 3) {
 System.err.println("Usage: ngram <input> <output>
 <number_of_grams>");
 System.exit(1);
 }
 ToolRunner.run(new NGramJob(new Configuration()), args);
 }
 public NGramJob(Configuration conf) {
 this.conf = conf;
 }

3. The run() method is where we set the input/output formats, mapper class
configuration, and key-value class configuration:
 public int run(String[] args) throws Exception {
 conf.setInt(GRAM_LENGTH, Integer.parseInt(args[2]));

 Job job = new Job(conf, "NGrams");
 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);
 job.setMapperClass(NGramJob.NGramMapper.class);
 job.setNumReduceTasks(0);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(NullWritable.class);
 job.setJarByClass(NGramJob.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job,
removeAndSetOutput(args[1]));

 return job.waitForCompletion(true) ? 1 : 0;
 }

4. The removeAndSetOutput() method is not required, but helps circumvent
previously existing directories that have errors at the mentioned path:
 private Path removeAndSetOutput(String outputDir) throws
IOException {

 FileSystem fs = FileSystem.get(conf);

 Path path = new Path(outputDir);

 fs.delete(path, true);

 return path;

 }

Performing Common Tasks Using Hive, Pig, and MapReduce

118

5. The map() function is implemented in the following code snippet by extending
mapreduce.Mapper:

 public static class NGramMapper extends Mapper<LongWritable,
Text, Text, NullWritable> {

 private int gram_length;
 private Pattern space_pattern = Pattern.compile("[]");
 private StringBuilder gramBuilder = new StringBuilder();

 @Override
 protected void setup(Context context) throws IOException,
InterruptedException {
 gram_length = context.getConfiguration().
getInt(NGramJob.GRAM_LENGTH, 0);
 }

 @Override
 protected void map(LongWritable key, Text value,
 Context context) throws IOException,
InterruptedException {
 String[] tokens = space_pattern.split(value.
toString());
 for (int i = 0; i < tokens.length; i++) {
 String token = tokens[i];
 gramBuilder.setLength(0);
 if(i + gram_length <= tokens.length) {
 for(int j = i; j < i + gram_length; j++) {
 gramBuilder.append(tokens[j]);
 gramBuilder.append(" ");
 }
 context.write(new Text(gramBuilder.toString()),
NullWritable.get());
 }
 }

 }

 }
}

Chapter 4

119

How it works...
First, we set up our imports and create a public class named NGram that implements the
MapReduce Tool interface. The static string NAME is useful, should you decide to configure
this job in a Hadoop Driver implementation. The NGram program requires three parameters
in exact order, namely the input path in HDFS, the desired output location in HDFS, and
the total number of grams to be calculated per token. We pass the ToolRunner with an
instance of the NGramJob class, as well as a Configuration object initialized with the
aforementioned parameters.

Inside the run() method, we configure the job to accept TextInputFormat and
TextOutputFormat to read the input as lines of text, and write lines of text out from the
map phase. We are also required to set the Mapper class to the public static inner class
NGramMapper. Since this is a map-only job, we set the number of reducers to zero. Then we
set the parameterized Writable types for the key-value pairs out of the mapper. It's also
very important to call the setJarByClass() method so the TaskTrackers can properly
unpack and find the Mapper and Reducer classes. The job uses the static helper methods
on FileInputFormat and FileOutputFormat to set the input and output directories
respectively. Since the output directory cannot exist, the program first deletes any previously
defined HDFS files or directories located at the supplied path. With everything configured
properly, the job is now ready for submission to the JobTracker.

The NGramMapper class has a few very important member variables. The variable gram_
length is dereferenced from the job configuration, which was set before submission to the
user-supplied argument. The variable space_pattern is statically compiled to perform a
regex split on space characters. The StringBuilder instance gramBuilder is used to
store the space-separated list of grams that correspond to each string token. The mapper
receives line numbers as LongWritable instances and the line content as a Text instance.
The function immediately splits the line into space-separated tokens. For each token, reset
gramBuilder, and if that token's position on the line when summed with gram_length
exceeds the total length in characters of the line, ignore it. Otherwise, iterate over and store
each following token in gramBuilder until the loop reaches gram_length; then, output
the gramBuilder content and cycle the outer loop to the next token. The net result is one
or more part files stored in the directory specified by the user-supplied argument, which
contains a line-separated list of n-grams in the news archives.

Sample output of bigrams (2 grams):

AWB has
has been
been banned
banned from
from trading

Performing Common Tasks Using Hive, Pig, and MapReduce

120

There's more...
The following two sections discuss how to use NullWritable objects effectively, and
also remind developers to use the HDFS filesystem delete functions with care.

Use caution when invoking FileSystem.delete()
The method removeAndSetPath() in this implementation automatically removes
the directory string argument without warning. This method is supplied this parameter by
the user-supplied output directory argument, which if reversed accidentally with the input
argument, would remove the input directory. Although programmatically inserting this kind
of behavior into a MapReduce setup routine is very handy, FileSystem.delete()
should be used with extreme caution.

Use NullWritable to avoid unnecessary serialization overhead
This program makes use of NullWritable as the output value type from the mapper.
Since the program writes a single gram per line, we can just use the key to emit all our
output. If your MapReduce job does not require both the key and the value to be emitted,
using NullWritable will save the framework the trouble of having to serialize unnecessary
objects out to the disk. In many scenarios, it is often cleaner and more readable than using
blank placeholder values or static singleton instances for output.

Using the distributed cache in MapReduce
to find lines that contain matching keywords
over news archives

The distributed cache in MapReduce is almost always required for any complex assignment
involving dependent libraries and code. One very common operation is passing cache files for
use in each map/reduce task JVM. This recipe will use the MapReduce API and the distributed
cache to mark any lines in the news archive dataset that contain one or more keywords
denoted in a list. We will use the distributed cache to make each mapper aware of the list
location in HDFS.

Getting ready
This recipe assumes you have a basic familiarity with the Hadoop 0.20 MapReduce API. You
will need access to the news_archives.zip dataset supplied with this book. Inside the
ZIP file, you will find rural.txt and science.txt. Place both in a single HDFS directory.
Additionally, inside the ZIP file you will find news_keywords.txt. You will need to place this
file in an HDFS directory with the absolute path /cache_files/news_archives.txt.
Feel free to add any additional words to this file, so long as they each appear on a new line.

Chapter 4

121

You will need access to a pseudo-distributed or fully-distributed cluster capable of running
MapReduce jobs using the newer MapReduce API introduced in Hadoop 0.20.

You will also need to package this code inside a JAR file that is to be executed by the Hadoop
JAR launcher from the shell. Only the core Hadoop libraries are required to compile and run
this example.

How to do it...
Carry out the following steps to implement a word-matching MapReduce job:

1. Create a class named LinesWithMatchingWordsJob.java in your JAR file
at whatever source package is appropriate.

2. The following code will serve as the Tool implementation for job submission:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.HashSet;
import java.util.Set;
import java.util.regex.Pattern;

public class LinesWithMatchingWordsJob implements Tool {
 private Configuration conf;

 public static final String NAME = "linemarker";

 public void setConf(Configuration conf) {

Performing Common Tasks Using Hive, Pig, and MapReduce

122

 this.conf = conf;
 }

 public Configuration getConf() {
 return conf;
 }

 public static void main(String[] args) throws Exception {
 if(args.length != 2) {
 System.err.println("Usage: linemarker <input>
<output>");
 System.exit(1);
 }
 ToolRunner.run(new LinesWithMatchingWordsJob(new
Configuration()), args);
 }

 public LinesWithMatchingWordsJob(Configuration conf) {
 this.conf = conf;
 }

3. The run() method is where we set the input/output formats, mapper class
configuration, and key-value class configuration:
 public int run(String[] args) throws Exception {

 DistributedCache.addCacheFile(new Path("/cache_files/news_
keywords.txt").toUri(), conf);

 Job job = new Job(conf, "Line Marker");
 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);
 job.setMapperClass(LineMarkerMapper.class);
 job.setNumReduceTasks(0);
 job.setOutputKeyClass(LongWritable.class);
 job.setOutputValueClass(Text.class);
 job.setJarByClass(LinesWithMatchingWordsJob.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job,new Path(args[1]));

 return job.waitForCompletion(true) ? 1 : 0;
 }

Chapter 4

123

4. The map() function is implemented in the following code snippet by extending
mapreduce.Mapper:
 public static class LineMarkerMapper extends
Mapper<LongWritable, Text, LongWritable, Text> {

 private Pattern space_pattern = Pattern.compile("[]");
 private Set<String> keywords = new HashSet<String>();

5. Inside the setup() routine, we must load and write the file to a local disk from the
distributed cache:

 @Override
 protected void setup(Context context) throws IOException,
InterruptedException {
 URI[] uris =DistributedCache.getCacheFiles(
 context.getConfiguration());
 FileSystem fs =
 FileSystem.get(context.getConfiguration());
 if(uris == null || uris.length == 0) {
 throw new IOException("Error reading file from
 distributed cache. No URIs found.");
 }
 String localPath = "./keywords.txt";
 fs.copyToLocalFile(new Path(uris[0]), new
 Path(localPath));
 BufferedReader reader = new BufferedReader(new
 FileReader(localPath));
 String word = null;
 while((word = reader.readLine()) != null) {
 keywords.add(word);
 }
 }

The map() function:

 @Override
 protected void map(LongWritable key, Text value,
 Context context) throws
 IOException, InterruptedException {
 String[] tokens =
 space_pattern.split(value.toString());
 for(String token : tokens) {
 if(keywords.contains(token)) {
 context.write(key, new Text(token));
 }
 }

 }

 }
}

Performing Common Tasks Using Hive, Pig, and MapReduce

124

How it works...
First, we set up our imports and create a public class LinesWithMatchingWordsJob.
This class implements the Hadoop Tool interface for easy submission using the
ToolRunner. Before the job is submitted, we first check for the existence of both input and
output parameters. Inside the run() method, we immediately call the DistributedCache
static helper method addCacheFile() and pass it a hardcoded reference to the HDFS
cache file at the absolute path /cache_files/news_keywords.txt. This file contains
the keywords, separated by newline characters, that we are interested in locating within
the news archives corpus. We pass the helper method a URI reference to this path and the
Configuration instance.

Now we can begin configuring the rest of the job. Since we are working with text, we will
use the TextInputFormat and TextOutputFormat classes to read and write lines
as strings. We will also configure the Mapper class to use the public static inner class
LineMarkerMapper. This is a map-only job, so we set the number of reducers to zero.
We also configure the output key type to be LongWritable for the line numbers and
the output value as Text for the words, as we locate them. It's also very important to call
setJarByClass() so that the TaskTrackers can properly unpack and find the Mapper
and Reducer classes. The job uses the static helper methods on FileInputFormat and
FileOutputFormat to set the input and output directories respectively. Now we
are completely set up and ready to submit the job.

The Mapper class has two very important member variables. There is a statically compiled
regex pattern used to tokenize each line by spaces, and a wordlist Set used to store each
distinct word we are interested in searching for.

The setup() method in the Mapper is told to pull the complete list of cache file URIs currently
in the distributed cache. We first check that the URI array returned a non-null value and that the
number of elements is greater than zero. If the array passes these tests, grab the keywords file
located in HDFS and write it to the temporary working directory for the task. Save the contents
in a local file named ./keywords.txt. Now we are free to use the standard Java I/O classes
to read/write off the local disk. Each line contained in the file denotes a keyword that we can
store in the keywords' HashSet. Inside our map() function, we first tokenize the line by spaces,
and for each token, we see if it's contained in our keyword list. If a match is found, emit the line
number it was found on as the key and the token itself as the value.

There's more...
The following are a few additional tips to know when starting out with the distributed cache
in MapReduce.

Chapter 4

125

Use the distributed cache to pass JAR dependencies to map/
reduce task JVMs
Very frequently, your map and reduce tasks will depend on third-party libraries that take the
form of JAR files. If you store these dependencies in HDFS, you can use the static helper
method DistributedCache.addArchiveToClassPath() to initialize your job with the
dependencies and have Hadoop automatically add the JAR files as classpath dependencies
for every task JVM in that job.

Distributed cache does not work in local jobrunner mode
If the configuration parameter mapred.job.tracker is set to local, the
DistributedCache cannot be used to configure archives or cache files from HDFS.

Using Pig to load a table and perform a
SELECT operation with GROUP BY

This recipe will use Pig to group the IP addresses contained in the ip_to_country dataset
and count the number of IP addresses listed for each country.

Getting ready
Make sure you have access to a pseudo-distributed or fully-distributed Hadoop cluster with
Apache Pig 0.9.2 installed on your client machine and on the environment path for the active
user account. This recipe depends on having the ip-to-country named dataset included in
the book loaded into HDFS at the absolute path /input/weblog_ip/ip_to_country.txt.

How to do it...
Carry out the following steps to perform a SELECT and GROUP BY operation in Pig:

1. Open a text editor of your choice, ideally one with SQL syntax highlighting.

2. Add the following inline creation syntax:
ip_countries = LOAD '/input/weblog_ip/ip_to_country.txt' AS
(ip: chararray, country:chararray);
country_grpd = GROUP ip_countries BY country;
country_counts = FOREACH country_grpd GENERATE FLATTEN(group),
COUNT(ip_countries) as counts;
STORE country_counts INTO '/output/geo_weblog_entries';

3. Save the file as group_by_country.pig.

4. In the directory containing the script, run the command line using the Pig client
with the –f option.

Performing Common Tasks Using Hive, Pig, and MapReduce

126

How it works...
The first line creates a Pig relation named ip_countries from the tab-delimited records
stored in HDFS. The relation specifies two attributes, namely ip and country, both character
arrays. The second line creates the country_grpd relation containing a record for each
distinct country in the ip_countries relation. The third line tells Pig to iterate over the
country_grpd relation and count the number of records in the ip_countries relation that
map to the current country. The results of this iteration are persisted to a new relation named
country_counts, which consists of tuples containing exactly two attributes, namely group
and counts. Store the tuples contained in this relation to the output directory specified by /
output/geo_weblog_entries.

The output is not sorted in country in the ascending or descending order.

You should see in HDFS, under /output/geo_weblog_entries, one or more part files
containing tab-delimited country listings and their IP address counts.

See also
 f The following recipes in Chapter 3, Extracting and Transforming Data

 � Using Apache Pig to filter bot traffic from web server logs

 � Using Apache Pig to sort web server logs data by timestamp

 f The Calculate cosine similarity of Artists in the Audioscrobbler dataset using Pig
recipe in Chapter 6, Big Data Analysis

5
Advanced Joins

In this chapter, we will cover:

 f Joining data in the Mapper using MapReduce

 f Joining data using Apache Pig replicated join

 f Joining sorted data using Apache Pig merge join

 f Joining skewed data using Apache Pig skewed join

 f Using a map-side join in Apache Hive to analyze geographical events

 f Using optimized full outer joins in Apache Hive to analyze geographical events

 f Joining data using an external key-value store (Redis)

Introduction
In most processing environments, there will be a need to join multiple datasets to
produce some final result. Unfortunately, joins in MapReduce are non-trivial and can be
an expensive operation. This chapter will demonstrate different approaches to joining data
in Hadoop using a number of tools, including Java MapReduce, Apache Pig, and Apache
Hive. In addition, this chapter will demonstrate how to leverage external memory resources
using Hadoop MapReduce.

Advanced Joins

128

Joining data in the Mapper using MapReduce
Joining data in MapReduce is an expensive operation. Depending on the size of the datasets,
you can choose to perform a map-side join or a reduce-side join. In a map-side join, two or
more datasets are joined on a key in the map phase of a MapReduce job. In a reduce-side
join, the mapper emits the join key, and the reduce phase is responsible for joining the two
datasets. In this recipe we will demonstrate how to perform a map-side replicated join using
Pig. We will join a weblog dataset, and a dataset containing a list of distinct IPs and their
associated country. As the datasets will be joined in the map-phase, this will be a
map-only job.

Getting ready
Download the apache_nobots_tsv.txt and nobots_ip_country_tsv.txt datasets
from http://www.packtpub.com/support and place them into HDFS.

How to do it...
Carry out the following steps to join data in the map phase using MapReduce:

1. Set up a map-only MapReduce job that will load the nobots_ip_country_tsv.
txt dataset into the distributed cache:
public class MapSideJoin extends Configured implements Tool {

 public int run(String[] args) throws Exception {

 Path inputPath = new Path(args[0]);
 Path outputPath = new Path(args[1]);

 Configuration conf = getConf();
 DistributedCache.addCacheFile(new
 URI("/user/hadoop/nobots_ip_country_tsv.txt"), conf);
 Job weblogJob = new Job(conf);
 weblogJob.setJobName("MapSideJoin");
 weblogJob.setNumReduceTasks(0);
 weblogJob.setJarByClass(getClass());
 weblogJob.setMapperClass(WeblogMapper.class);
 weblogJob.setMapOutputKeyClass(Text.class);
 weblogJob.setMapOutputValueClass(Text.class);
 weblogJob.setOutputKeyClass(Text.class);
 weblogJob.setOutputValueClass(Text.class);

Chapter 5

129

 weblogJob.setInputFormatClass(TextInputFormat.class);
 weblogJob.setOutputFormatClass(TextOutputFormat.class);
 FileInputFormat.setInputPaths(weblogJob, inputPath);
 FileOutputFormat.setOutputPath(weblogJob, outputPath);

 if(weblogJob.waitForCompletion(true)) {
 return 0;
 }
 return 1;
 }

 public static void main(String[] args) throws Exception {
 int returnCode = ToolRunner.run(new MapSideJoin(), args);
 System.exit(returnCode);
 }
}

2. Create a mapper to read the nobots_ip_country_tsv.txt dataset from the
distributed cache, and store the IP/Country table into a HashMap.
public class WeblogMapper extends Mapper<Object, Text, Text, Text>
{

 public static final String IP_COUNTRY_TABLE_FILENAME =
 "nobots_ip_country_tsv.txt";
 private Map<String, String> ipCountryMap = new
 HashMap<String, String>();

 private Text outputKey = new Text();
 private Text outputValue = new Text();

 @Override
 protected void setup(Context context) throws IOException,
InterruptedException {
 Path[] files = DistributedCache.getLocalCacheFiles(context.
getConfiguration());
 for (Path p : files) {
 if (p.getName().equals(IP_COUNTRY_TABLE_FILENAME)) {
 BufferedReader reader = new BufferedReader(new
FileReader(p.toString()));
 String line = reader.readLine();
 while(line != null) {
 String[] tokens = line.split("\t");

Advanced Joins

130

 String ip = tokens[0];
 String country = tokens[1];
 ipCountryMap.put(ip, country);
 line = reader.readLine();
 }
 }
 }

 if (ipCountryMap.isEmpty()) {
 throw new IOException("Unable to load IP country table.");
 }
 }

 @Override
 protected void map(Object key, Text value, Context
context) throws IOException, InterruptedException {
 String row = value.toString();
 String[] tokens = row.split("\t");
 String ip = tokens[0];
 String country = ipCountryMap.get(ip);
 outputKey.set(country);
 outputValue.set(row);
 context.write(outputKey, outputValue);
 }

}

3. Run the job:

$ hadoop jar AdvJoinChapter5-1.0.jar com.packt.ch5.advjoin.
mr.MapSideJoin /user/hadoop/apache_nobots_tsv.txt /user/hadoop/
data_jnd

How it works...
In step 1, we called the following static method:

DistributedCache.addCacheFile(new URI("/user/hadoop/nobots_ip_country_
tsv.txt"), conf)

Chapter 5

131

This method will set the mapred.cache.files property in the job configuration. The
mapred.cache.files property tells the MapReduce framework to distribute the nobots_
ip_country_tsv.txt file to every node in the cluster that will launch a mapper (and
reducer if your job is configured to run reducers).

In step 2, we overrode the setup() method of the mapper. The setup() method is
called by the MapReduce framework only once, prior to any calls to the map() method.
The setup() method is an excellent place to perform any one-time initialization to the
mapper class.

To read from the distributed cache, we used the static method DistributedCache.
getLocalCacheFiles(context.getConfiguration()) to get all of the files that have
been placed, into the distributed cache. Next, we iterated over every file in the distributed
cache, which was only one, and loaded the nobots_ip_country_tsv.txt dataset into
a HashSet.

Finally, in the map() method, we used the HashSet loaded in the setup() method to join
the nobots_ip_country_tsv.txt and the apache_nobots_tsv.txt files by emitting
the country associated with every IP in the apache_nobots_tsv.txt file.

There's more...
The MapReduce framework also supports distributing archive files using the distributed
cache. An archive file can be a ZIP file, GZIP file, or even a JAR file. Once the archives have
been distributed to the task nodes, they will be decompressed automatically.

To add an archive to the distributed cache, simply use the addCacheArchive() static
method of the DistributedCache class when configuring the MapReduce job:

 DistributedCache.addCacheArchive(new URI("/user/hadoop/nobots_
ip_country_tsv.zip"), conf);

See also
 f Joining data using Apache Pig replicated join

 f Joining sorted data using Apache Pig merge join

 f Joining skewed data using Apache Pig skewed join

Advanced Joins

132

Joining data using Apache Pig replicated
join

Apache Pig supports a number of advanced joins, including:

 f Reduce-side joins

 f Replicated joins

 f Merge joins

 f Skewed joins

The reduce-side join is the default implementation when you use Pig's JOIN operator. Pig
also supports map-side joins when you specify the replicated or merge keyword. This
recipe will demonstrate how to perform a map-side replicated join using Pig. We will join a
weblog dataset, and a dataset containing a list of distinct IPs and their associated countries.

Getting ready
Download the apache_nobots_tsv.txt and nobots_ip_country_tsv.txt datasets
from http://www.packtpub.com/support and place them into HDFS. You will also
need a recent version of Apache Pig (0.9 or later) installed on the cluster.

How to do it...
Carry out the following steps to perform a replicated join in Apache Pig:

1. Open your favorite text editor and create a file named replicated_join.pig.
Create two Pig relations to load the two datasets:
nobots_weblogs = LOAD '/user/hadoop/apache_nobots_tsv.txt' AS
(ip: chararray, timestamp:long, page:chararray, http_status:int,
payload_size:int, useragent:chararray);
ip_country_tbl = LOAD '/user/hadoop/nobots_ip_country_tsv.txt' AS
(ip:chararray, country:chararray);

2. Join the two datasets using the replicated keyword:
weblog_country_jnd = JOIN nobots_weblogs BY ip, ip_country_tbl BY
ip USING 'replicated';

Chapter 5

133

3. Format the joined relation and store the result:
cleaned = FOREACH weblog_country_jnd GENERATE ip_country_tbl::ip,
country, timestamp, page, http_status, payload_size, useragent;
STORE cleaned INTO '/user/hadoop/weblog_country_jnd_replicated';

4. Run the job:

$ pig –f replicated_join.pig

How it works...
In step 1, we defined two relations: nobots_weblogs and ip_country_tbl, to refer
to the two input datasets. Next, we joined the two datasets on the ip field using Pig's
replicated join. Pig will load the right-most relation, ip_country_tbl, into memory
and will join the data with the nobots_weblogs relationship. It is important that the
right-most relations be small enough to fit into a mapper's memory. Pig will not warn you
if the dataset is too large, the job will just fail with an out of memory exception.

Finally, in step 3, we formatted the joined relation into a new relation named cleaned.
There is one field that looks odd in the FOREACH statement, and that field is ip_country_
tbl::ip. We had to use the :: operator to define which column we wanted to store in the
cleaned relation, since the joined relation contains two fields named ip. We could have
easily chosen to use nobots_weblogs::ip instead; it makes no difference in this example.

There's more...
The replicated join can be used on more than one relation. For example, we can modify the
previous recipe to use a replicated join to perform an inner join on three relations:

weblog_country_jnd = JOIN nobots_weblogs BY ip, ip_country_tbl BY ip,
another_relation BY ip USING 'replicated';

Again, the right-most datasets must fit into the main memory. In this case, both ip_
country_tbl and another_relation must fit into the memory of a mapper.

See also
 f Joining sorted data using Apache Pig merge join

 f Joining skewed data using Apache Pig skewed join

Advanced Joins

134

Joining sorted data using Apache Pig
merge join

Like the replicated join described in the previous recipe, the Apache Pig's merge join
is another map-side join technique. However, the major difference between the two
implementations is that the merge join does not place any data into main memory.
This recipe will demonstrate how to use Pig's merge join to join two datasets.

Getting ready
Download the apache_nobots_tsv.txt and nobots_ip_country_tsv.txt datasets
from http://www.packtpub.com/support and place them into the folder that you are
working on. You will also need a recent version of Apache Pig (0.9 or later) installed on
the cluster.

In order to use the merge join functionality in Pig, the two datasets need to be sorted on
the join key. To sort the two datasets, run the following commands using Unix sort:

$ sort -k1 apache_nobots_tsv.txt > sorted_apache_nobots_tsv.txt

$ sort -k1 nobots_ip_country_tsv.txt > sorted_nobots_ip_country_tsv.txt

Place the two new sorted files into HDFS:

$ hadoop fs –put sorted_apache_nobots_tsv.txt /user/hadoop

$ hadoop fs –put sorted_nobots_ip_country_tsv.txt /user/hadoop

How to do it...
Carry out the following steps to perform a merge join in Apache Pig:

1. Open a text editor and create a file named merge_join.pig. Create two Pig
relations to load the two datasets:
nobots_weblogs = LOAD '/user/hadoop/sorted_apache_nobots_tsv.
txt' AS (ip: chararray, timestamp:long, page:chararray, http_
status:int, payload_size:int, useragent:chararray);
ip_country_tbl = LOAD '/user/hadoop/sorted_nobots_ip_country_tsv.
txt' AS (ip:chararray, country:chararray);

2. Join the two datasets using the merge keyword:
weblog_country_jnd = JOIN nobots_weblogs BY ip, ip_country_tbl BY
ip USING 'merge';

Chapter 5

135

3. Format the joined relationship and store the result:
cleaned = FOREACH weblog_country_jnd GENERATE ip_country_tbl::ip,
country, timestamp, page, http_status, payload_size, useragent;
STORE cleaned INTO '/user/jowens/weblog_country_jnd_merge';

4. Run the job:

$ pig –f merge_join.pig

How it works...
In step 1, we defined two relations: nobots_weblogs and ip_country_tbl, to refer to
the two datasets.

In step 2, we joined the two datasets on the ip field using Pig's merge join. Pig will launch
two MapReduce jobs to perform the merge join. First, Pig will send the data associated with
the nobots_weblogs relation to all of the mappers, and sample the ip_country_tbl
data to build an index. It is important to place the larger of the two relations as the left-hand
side input to the JOIN statement, as we did with the nobots_weblogs relation. Once Pig
has built the index, it launches a second map-only job, which reads the left-hand side
relationship, and the index created in the first MapReduce job to join the two relations.

There's more...
It is important to note that Pig's merge join requires the input data to be sorted in ascending
order across all input files. In addition, all of the data must be sorted in an ascending order
by filename. For example, if the nobots_weblogs relation contains three distinct IPs
across two input files, the following IPs could be distributed in this fashion:

 f Rows containing the IP 111.0.0.0 in the file named part-00000

 f Rows containing the IP 112.0.0.0 must occur after 111.0.0.0 in the file named
part-00000

 f Rows containing the IP 222.0.0.0 will be placed into a file named part-00001

This example shows the possible total ordering of IPs across a number of files ordered by
name. Filenames need to support ascending order because this is the order in which Pig
will attempt to read each file to access the sorted data.

See also
 f Joining skewed data using Apache Pig skewed join

Advanced Joins

136

Joining skewed data using Apache Pig
skewed join

Data skew is a serious problem in a distributed processing environment, and occurs when
the data is not evenly divided among the emitted key tuples from the map phase. This can
lead to inconsistent processing times. In the MapReduce framework, data skew can cause
some mappers/reducers to take significantly more time to perform a task as compared to
other mappers/reducers in the job.

Apache Pig has the skewed join to help alleviate the data skew issue with joins. This recipe
will demonstrate how to join a skewed dataset, with a small table.

Getting ready
Download the apache_nobots_tsv.txt and nobots_ip_country_tsv.txt datasets
from http://www.packtpub.com/support and place them in the folder which you are
currently working on. You will also need a recent version of Apache Pig (0.9 or later) installed
on the cluster.

To skew the apache_nobots_tsv.txt file, create the following shell script to append the
same row a few thousand times to a new file named skewed_apache_nobots_tsv.txt:

#!/bin/bash

cat apache_nobots_tsv.txt > skewed_apache_nobots_tsv.txt
for i in {1..5000}
do
 head -n1 apache_nobots_tsv.txt >> skewed_apache_nobots_tsv.txt
done

The IP address 221.220.8.0 will appear significantly higher number of times in the
skewed_apache_nobots_tsv.txt file than any other IP.

Place the skewed_apache_nobots_tsv.txt and nobots_ip_country_tsv.txt files
into HDFS:

$hadoop fs –put skewed_apache_nobots_tsv.txt /user/hadoop/

$hadoop fs –put nobots_ip_country_tsv.txt /user/hadoop/

Chapter 5

137

How to do it...
Follow the steps to perform a skewed join in Apache Pig:

1. Open a text editor and create a file named skewed_join.pig. Create two relations
to load the two datasets:
nobots_weblogs = LOAD '/user/hadoop/skewed_apache_nobots_tsv.
txt' AS (ip: chararray, timestamp:long, page:chararray, http_
status:int, payload_size:int, useragent:chararray);
ip_country_tbl = LOAD '/user/hadoop/nobots_ip_country_tsv.txt' AS
(ip:chararray, country:chararray);

2. Join the two datasets using the skewed keyword:
weblog_country_jnd = JOIN nobots_weblogs BY ip, ip_country_tbl BY
ip USING 'skewed';

3. Format the joined relationship and store the result:
cleaned = FOREACH weblog_country_jnd GENERATE ip_country_tbl::ip,
country, timestamp, page, http_status, payload_size, useragent;
STORE cleaned INTO '/user/hadoop/weblog_country_jnd_skewed';

4. Run the job:

$ pig –f skewed_join.pig

How it works...
In step 1, we defined two relations: nobots_weblogs and ip_country_tbl, to refer to
the two datasets.

In step 2, we joined the two datasets on the ip field using Pig's skewed join. Pig will launch
two MapReduce jobs to perform the skewed join. The first MapReduce job will sample the
nobots_weblogs.txt (the skewed data) dataset. The second MapReduce job will perform
a reduce-side join. Pig will determine how the data is distributed to the reducers based on
the sampling from the first map reduce job. If there is skew present in the dataset, Pig will
attempt to optimize the data distribution to the reducers.

Advanced Joins

138

Using a map-side join in Apache Hive to
analyze geographical events

When joining two tables in Apache Hive, one table might be significantly smaller than the
other. In such cases, Hive can push a hash table representing the smaller table over the
distributed cache and join the tables entirely map-side, which can lead to better parallelism
and job throughput. In this recipe, we will use a map-side join to attach any significant holiday
information that may have occurred on a particular geographic event.

Getting ready
Ensure that Apache Hive 0.7.1 is installed on your client machine and on the environment
path for the active user account.

This recipe depends on having the Nigera_ACLED_cleaned.tsv dataset loaded into a
Hive table with the name acled_nigeria_cleaned and with the following fields mapped
to the respective datatypes. The Nigera_ACLED_cleaned.tsv dataset can be downloaded
from http://www.packtpub.com/support.

Issue the following command to the Hive client:

describe acled_nigeria_cleaned

You should see the following response:

OK

loc string

event_date string

event_type string

actor string

latitude double

longitude double

source string

fatalities int

Chapter 5

139

This recipe also requires having nigeria-holidays.tsv loaded into a Hive table with the
name nigeria_holidays and the following fields mapped to the respective datatypes.

Issue the following command to the Hive client:

describe nigeria_holidays

You should see the following response:

OK

yearly_date string

description string

How to do it...
Carry out the following steps to perform a map-side join in Apache Hive:

1. Open a text editor and create a file named map-join-acled-holidays.sql.

2. Add the inline creation and transformation syntax:
SELECT /*+ MAPJOIN(nh)*/ acled.event_date, acled.event_type,
nh.description
 FROM acled_nigeria_cleaned acled
 JOIN nigeria_holidays nh
 ON (substr(acled.event_date, 6) = nh.yearly_date);

3. Run the map-join-acled-holidays.sql script from the operating system shell
by supplying the –f option to the Hive client. You will know the map-side join is
working if you see this message in the output trace:
Mapred Local Task Succeeded. Convert the Join into MapJoin

The generated MapReduce job should not have any reduce tasks.

4. You should see the following five rows appear first in the output console:

2002-01-01 Riots/Protests New Years Day
2001-06-12 Battle-No change of territory Lagos State only; in
memory of failed 1993 election
2002-05-29 Violence against civilians Democracy Day
2010-10-01 Riots/Protests Independence Day
2010-10-01 Violence against civilians Independence Day

Advanced Joins

140

How it works...
The script inner joins the month-day portion of each record in the event_date column
in acled_nigeria_cleaned to the yearly_date column in nigeria_holidays.
substr(event_date, 6) will omit the year portion from each record in the event_
date column by starting from the position of the sixth character. The inline hint to /*+
MAPJOIN(nh) */ lets you manually define which table alias to load as the small table to
each mapper. The nigeria_holidays table is very small and made the most sense to load
as a hash table. Each map process in the join can operate over rows from acled_nigeria_
cleaned with its own copy of the nigeria_holidays hash table. The MAPJOIN operation
handles creating the hash table and distributing it to each map task.

We would like to see the values of the event_date and event_type columns, and a
description of the holiday, if any, the event occurred on.

There's more...
Map-side joins can be tricky to configure and use properly. Here are a few pointers.

Auto-convert to map-side join whenever possible
Set the property hive.auto.convert.join to true in your Hive config and Hive will
automatically try to convert the join to a map-side join, as long as the table fits below a
certain size threshold. You can configure the maximum size with the property hive.
smalltable.filesize. This will tell Hive what file size (or below) constitutes a small
table. It's written in bytes expressed as a long (for example, 25000000L = 25M).

Also consider setting hive.hashtable.max.memory.usage, which tells the map task
to terminate if it requires more than the configured memory percentage.

Map-join behavior
If you omit /*+ MAPJOIN() */ and rely on auto-convert, it can be difficult to follow what
Hive is doing to optimize the join. Following are some tips:

 f TableFoo LEFT OUTER JOIN TableBar: Try to convert TableBar to a
hash table

 f TableFoo RIGHT OUTER JOIN TABLE B: Try to convert TableFoo to a
hash table

 f TableFoo FULL OUTER JOIN TableBar: Framework cannot map join
full outer joins

Chapter 5

141

See also
 f Using optimized full outer joins in Apache Hive to analyze geographical events

Using optimized full outer joins in Apache
Hive to analyze geographical events

This recipe will take a list of Nigerian VIPs and join any Nigerian ACLED events that occurred
on any VIP's birthday. We are not only interested in viewing events that did or did not occur
on a famous person's birthday, but also in the people who are not linked to any event. To
accomplish this analytics in a single query, a full outer join makes the most sense. We
would also like to store the results in a table.

Getting ready
Ensure that Apache Hive 0.7.1 is installed on your client machine and on the environment
path for the active user account.

This recipe depends on having the Nigera_ACLED_cleaned.tsv dataset loaded into
a Hive table with the name acled_nigeria_cleaned and with the following fields
mapped to the respective datatypes. The Nigera_ACLED_cleaned.tsv dataset can
be downloaded from http://www.packtpub.com/support.

Issue the following command to the Hive client:

describe acled_nigeria_cleaned

You should see the following response:

OK

loc string

event_date string

event_type string

actor string

latitude double

longitude double

source string

fatalities int

Advanced Joins

142

This recipe also requires having nigeria-vip-birthdays.tsv loaded into a Hive table
with the name nigeria_vips and with the following fields mapped to the respective
datatypes. The nigeria-vip-birthdays.tsv dataset can be downloaded from
http://www.packtpub.com/support.

Issue the following command to the Hive client:

describe nigeria_vips

You should see the following response:

OK

name string

birthday string

description string

How to do it...
Follow the steps to perform a full outer join in Hive:

1. Open a text editor and create a file named full_outer_join_acled_vips.sql.

2. Add the inline creation and transformation syntax:
DROP TABLE IF EXISTS acled_nigeria_event_people_links;
CREATE TABLE acled_nigeria_event_people_links AS
SELECT acled.event_date, acled.event_type, vips.name, vips.
description as pers_desc, vips.birthday
 FROM nigeria_vips vips
 FULL OUTER JOIN acled_nigeria_cleaned acled
 ON (substr(acled.event_date,6) = substr(vips.birthday,
6));

3. Run the full_outer_join_acled_vips.sql script from the operating system
shell by supplying the –f option to the Hive client.

4. Once the script successfully finishes, it should signal 2931 records loaded into the
table acled_nigeria_event_people_links.

5. Issue the following query to the Hive shell:
SELECT * FROM acled_nigeria_event_people_links WHERE event_date IS
NOT NULL AND birthday IS NOT NULL limit 2";

Chapter 5

143

6. You should see the following output:

OK
2008-01-01 Battle-No change of territory Jaja Wachuku "First
speaker of the Nigerian House of Representatives" 1918-01-01

2002-01-01 Riots/Protests Jaja Wachuku "First speaker of the
Nigerian House of Representatives" 1918-01-01

How it works...
First, we drop any tables previously created by the name acled_nigeria_event_people_
links. We use an inline CREATE TABLE AS statement to shortcut having to explicitly define
the table.

The full outer join will match rows from acled_nigeria_cleaned to rows from nigeria_
vips, where the substring of the records in the event_date column, starting at the sixth
character position, is equal to a VIP's birthday. We use the substr(event_date, 6)
method to eliminate the year portion of the records in the event_date column as a
comparison factor.

The columns our receiving table will contain from the SELECT statement are acled.event_
date, acled.event_type, vips.name, vips.description as pers_desc, and vips.
birthday. The vips.description column gets the alias pers_desc to make the column
label a little more meaningful. For event records with no matching birthdays, the columns
vips.name, vips.description, and pers_desc will be NULL. For people with no matching
events, the columns acled.event_date and acled.event_type will be NULL.

The decision to include nigeria_vips in the FROM and JOIN clauses on acled_nigeria_
cleaned was made to optimize the reducer throughput. Since we are performing a Hive
common join and not a map-side join, the actual table joining will occur reduce-side. Hive will
attempt to buffer the rows from the left-most table and then stream the rows from the right-
most table. The table nigeria_vips is much smaller than acled_nigeria_cleaned,
thus we can alleviate the reducer memory footprint by designing the syntax of our query to
stream the rows of acled_nigeria_cleaned and buffer those in nigeria_vips.

As it turns out for this particular VIP list, there were no birthdays for which there was no event
listed in acled_nigeria_cleaned; therefore, the outer join produces no rows for people
whose birthdays did not match an event. Moreover, no two people in our list have the same
birthday; therefore, the outer join does not replicate the same event into multiple rows for
each VIP birthday joined. The resulting table contains 2931 rows, which is exactly the same
as the number of rows in acled_nigeria_cleaned.

Advanced Joins

144

There's more...
There are other things you can do to improve the performance of the join operations in Hive.

Common join versus map-side join
The Hive documentation will use the term "common join" to refer to a join operation where
one or more reducers are required to physically join the table rows. Map-side joins, as the
name would suggest, perform the join across parallel map tasks and eliminate the need
for the reduce phase.

STREAMTABLE hint
You can dictate which tables to stream during the reduce phase by using /*+
STREAMTABLE(tablename) */.

Table ordering in the query matters
The left-to-right ordering of join table declarations in your queries, especially in a multi-table
join, is very important. Hive will attempt to buffer the rows from the left-hand side table and
stream the results of the right-hand side. In a multi-table join, several map/reduce jobs may
occur, but the same semantics apply. The result of the first join will be buffered, while the
rows of the next right-most table will be streamed. Use this knowledge to order your table
joins wisely.

Joining data using an external key-value
store (Redis)

Key-value stores are an efficient tool for storing large datasets. In MapReduce, we can use
key-value stores to house large datasets that might not fit into the memory of a mapper or
mappers (remember that multiple mappers can run on the same slave node), but can fit
into the main memory of the server.

In this recipe, we will demonstrate how to use Redis to perform a map-side join
using MapReduce.

Getting ready
First, download and install Redis. This book used Redis version 2.4.15. A quick start guide is
available on the Redis website, http://redis.io/topics/quickstart. Once you have
compiled and installed the Redis server, start the server by issuing the following command:

$ redis-server

Chapter 5

145

Verify that the Redis server is working properly by using redis-cli:

$ redis-cli ping

Redis should respond with the message "PONG" if everything has been set up properly.

Next, you will need to download and compile Jedis from https://github.com/
xetorthio/jedis. Jedis is a Redis Java client that we will use in our MapReduce
application to communicate with Redis. This book used Jedis version 2.1.0.

Finally, download the apache_nobots_tsv.txt and nobots_ip_country_tsv.txt
datasets from http://www.packtpub.com/support. Place the apache_nobots_tsv.
txt file into HDFS, and leave the nobots_ip_country_tsv.txt file in the folder that
you are working on.

How to do it...
Follow these steps to join data in MapReduce using Redis:

1. Create a Java method to read the nobots_ip_country_tsv.txt file from
the folder that you are working on, and load its contents to Redis using the
Jedis client:
private void loadRedis(String ipCountryTable) throws IOException {
FileReader freader = new FileReader(ipCountryTable);
 BufferedReader breader = new BufferedReader(freader);
 jedis = new Jedis("localhost");
 jedis.select(0);
 jedis.flushDB();
 String line = breader.readLine();
 while(line != null) {
 String[] tokens = line.split("\t");
 String ip = tokens[0];
 String country = tokens[1];
 jedis.set(ip, country);
 line = breader.readLine();
 }
 System.err.println("db size = " + jedis.dbSize());
 }

Advanced Joins

146

2. Next, set up a map-only MapReduce job. The following code snippet is the final
version of the class to create a map-only MapReduce job. It contains the
loadRedis() method we created in step 1:
public class MapSideJoinRedis extends Configured implements Tool {

 private Jedis jedis = null;

 private void loadRedis(String ipCountryTable) throws
 IOException {

 FileReader freader = new FileReader(ipCountryTable);
 BufferedReader breader = new BufferedReader(freader);
 jedis = new Jedis("localhost");
 jedis.select(0);
 jedis.flushDB();
 String line = breader.readLine();
 while(line != null) {
 String[] tokens = line.split("\t");
 String ip = tokens[0];
 String country = tokens[1];
 jedis.set(ip, country);
 line = breader.readLine();
 }
 System.err.println("db size = " + jedis.dbSize());
 }

 public int run(String[] args) throws Exception {

 Path inputPath = new Path(args[0]);
 String ipCountryTable = args[1];
 Path outputPath = new Path(args[2]);

 loadRedis(ipCountryTable);

 Configuration conf = getConf();
 Job weblogJob = new Job(conf);
 weblogJob.setJobName("MapSideJoinRedis");
 weblogJob.setNumReduceTasks(0);
 weblogJob.setJarByClass(getClass());
 weblogJob.setMapperClass(WeblogMapper.class);
 weblogJob.setMapOutputKeyClass(Text.class);
 weblogJob.setMapOutputValueClass(Text.class);

Chapter 5

147

 weblogJob.setOutputKeyClass(Text.class);
 weblogJob.setOutputValueClass(Text.class);
 weblogJob.setInputFormatClass(TextInputFormat.class);
 weblogJob.setOutputFormatClass(TextOutputFormat.class);
 FileInputFormat.setInputPaths(weblogJob, inputPath);
 FileOutputFormat.setOutputPath(weblogJob, outputPath);

 if(weblogJob.waitForCompletion(true)) {
 return 0;
 }
 return 1;
 }

 public static void main(String[] args) throws Exception {
 int returnCode = ToolRunner.run(new
 MapSideJoinRedis(), args);
 System.exit(returnCode);
 }
}

3. Create a mapper that will join the apache_nobots_tsv.txt dataset with the
nobots_ip_country_tsv.txt dataset that has been loaded to Redis:
public class WeblogMapper extends Mapper<Object, Text, Text, Text>
{

 private Map<String, String> ipCountryMap = new
 HashMap<String, String>();
 private Jedis jedis = null;
 private Text outputKey = new Text();
 private Text outputValue = new Text();

 private String getCountry(String ip) {
 String country = ipCountryMap.get(ip);
 if (country == null) {
 if (jedis == null) {
 jedis = new Jedis("localhost");
 jedis.select(0);
 }
 country = jedis.get(ip);
 ipCountryMap.put(ip, country);
 }

Advanced Joins

148

 return country;
 }

 @Override
 protected void map(Object key, Text value, Context
 context) throws IOException, InterruptedException {
 String row = value.toString();
 String[] tokens = row.split("\t");
 String ip = tokens[0];
 String country = getCountry(ip);
 outputKey.set(country);
 outputValue.set(row);
 context.write(outputKey, outputValue);
 }

}

4. Finally, launch the MapReduce job:

$ hadoop jar AdvJoinChapter5-1.0-SNAPSHOT.jar com.packt.ch5.
advjoin.redis.MapSideJoinRedis /user/hadoop/apache_nobots_tsv.txt
./nobots_ip_country_tsv.txt /user/hadoop/data_jnd

How it works...
In steps 1 and 2, we created a class to set up a map-only job. This class looks very familiar
to other map-only jobs we've created in past recipes, except for the loadRedis() method.

The loadRedis() method first connects to the local Redis instance using the Jedis
constructor. Next, we used the select() method to choose which Redis database we
wanted to use. A single Redis instance can contain a number of databases, which are
identified using a numeric index. Once we get connected to the desired database, we
call the method flushDB(), which deletes everything currently stored in the current
database. Finally, we read the nobots_ip_country_tsv.txt file from the folder in
which you are currently working, and load the Redis instance with the key-value
pair ip/country by using the set() method.

There's more...
This recipe used a very simple string data structure to store the ip/country key-value
pairs. Redis supports many other data structures, including hashes, lists, and sorted sets.
In addition, Redis has support for transactions, and a publish/subscribe mechanism. Visit
the Redis website http://redis.io/, to review all of this functionality in depth.

6
Big Data Analysis

In this chapter, we will cover:

 f Counting distinct IPs in weblog data using MapReduce and Combiners

 f Using Hive date UDFs to transform and sort event dates from geographic event data

 f Using Hive to build a per-month report of fatalities over geographic event data

 f Implementing a custom UDF in Hive to help validate source reliability over geographic
event data

 f Marking the longest period of non-violence using Hive MAP/REDUCE operators
and Python

 f Calculating the cosine similarity of Artists in the Audioscrobbler dataset using Pig

 f Trim outliers from the Audioscrobbler dataset using Pig and datafu

Introduction
Learning to apply Apache Hive, Pig, and MapReduce to solve the specific problems you are
faced with can be difficult. The recipes in this chapter present a few big data problems and
provide solutions that show how to tackle them. You will notice that the questions we ask
of the data are not incredibly complicated, but you will require a different approach when
dealing with a large volume of data. Even though the sample datasets in the recipes are
small, you will find that the code is still very applicable to bigger problem spaces distributed
over large Hadoop clusters.

The analytic questions in this chapter are designed to highlight many of the more powerful
features of the various tools. You will find many of these features and operators useful as
you begin solving your own problems.

Big Data Analysis

150

Counting distinct IPs in weblog data using
MapReduce and Combiners

This recipe will walk you through creating a MapReduce program to count distinct IPs in
weblog data. We will demonstrate the application of a combiner to optimize data transfer
overhead between the map and reduce stages. The code is implemented in a generic
fashion and can be used to count distinct values in any tab-delimited dataset.

Getting ready
This recipe assumes that you have a basic familiarity with the Hadoop 0.20 MapReduce API.
You will need access to the weblog_entries dataset supplied with this book and stored
in an HDFS folder at the path /input/weblog.

You will need access to a pseudo-distributed or fully-distributed cluster capable of running
MapReduce jobs using the newer MapReduce API introduced in Hadoop 0.20.

You will also need to package this code inside a JAR file to be executed by the Hadoop
JAR launcher from the shell. Only the core Hadoop libraries are required to compile and
run this example.

How to do it...
Perform the following steps to count distinct IPs using MapReduce:

1. Open a text editor/IDE of your choice, preferably one with Java syntax highlighting.

2. Create a class named DistinctCounterJob.java in your JAR file at whatever
source package is appropriate.

3. The following code will serve as the Tool implementation for job submission:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

Chapter 6

151

import java.io.IOException;
import java.util.regex.Pattern;

public class DistinctCounterJob implements Tool {

 private Configuration conf;
 public static final String NAME = "distinct_counter";
 public static final String COL_POS = "col_pos";

 public static void main(String[] args) throws Exception {
 ToolRunner.run(new Configuration(), new
DistinctCounterJob(), args);
 }

4. The run() method is where we set the input/output formats, mapper class
configuration, combiner class, and key/value class configuration:
 public int run(String[] args) throws Exception {
 if(args.length != 3) {
 System.err.println("Usage: distinct_counter <input>
<output> <element_position>");
 System.exit(1);
 }
 conf.setInt(COL_POS, Integer.parseInt(args[2]));

 Job job = new Job(conf, "Count distinct elements at
position");
 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);

 job.setMapperClass(DistinctMapper.class);
 job.setReducerClass(DistinctReducer.class);
 job.setCombinerClass(DistinctReducer.class);

 job.setMapOutputKeyClass(Text.class);
 job.setMapOutputValueClass(IntWritable.class);
 job.setJarByClass(DistinctCounterJob.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 return job.waitForCompletion(true) ? 1 : 0;

 }

Big Data Analysis

152

 public void setConf(Configuration conf) {
 this.conf = conf;
 }

 public Configuration getConf() {
 return conf;
 }
}

5. The map() function is implemented in the following code by extending
mapreduce.Mapper:
 public static class DistinctMapper
 extends Mapper<LongWritable, Text, Text, IntWritable>
{

 private static int col_pos;
 private static final Pattern pattern = Pattern.
compile("\\t");
 private Text outKey = new Text();
 private static final IntWritable outValue = new
IntWritable(1);

 @Override
 protected void setup(Context context
) throws IOException, InterruptedException {
 col_pos = context.getConfiguration().
getInt(DistinctCounterJob.COL_POS, 0);
 }

 @Override
 protected void map(LongWritable key, Text value,
 Context context) throws IOException,
InterruptedException {
 String field = pattern.split(value.toString())[col_
pos];
 outKey.set(field);
 context.write(outKey, outValue);
 }
 }

Chapter 6

153

6. The reduce() function is implemented in the following code by extending
mapreduce.Reducer:
 public static class DistinctReducer
 extends Reducer<Text, IntWritable, Text, IntWritable>
{

 private IntWritable count = new IntWritable();

 @Override
 protected void reduce(Text key, Iterable<IntWritable>
values, Context context
) throws IOException, InterruptedException {
 int total = 0;
 for(IntWritable value: values) {
 total += value.get();
 }
 count.set(total);
 context.write(key, count);
 }
 }

7. The following command shows the sample usage against weblog data with column
position number 4, which is the IP column:

hadoop jar myJobs.jar distinct_counter /input/weblog/ /output/
weblog_distinct_counter 4

How it works...
First we set up DistinctCounterJob to implement a Tool interface for remote submission.
The static constant NAME is of potential use in the Hadoop Driver class, which supports the
launching of different jobs from the same JAR file. The static constant COL_POS is initialized
to the third required argument from the command line <element_position>. This value
is set within the job configuration, and should match the position of the column you wish to
count for each distinct entry. Supplying 4 will match the IP column for the weblog data.

Since we are reading and writing text, we can use the supplied TextInputFormat and
TextOutputFormat classes. We will set the Mapper and Reduce classes to match our
DistinctMapper and DistinctReducer implemented classes respectively. We also
supply DistinctReducer as a combiner class. This decision is explained in more detail
as follows:

Big Data Analysis

154

It's also very important to call setJarByClass() so that the TaskTrackers can properly
unpack and find the Mapper and Reducer classes. The job uses the static helper methods
on FileInputFormat and FileOutputFormat to set the input and output directories
respectively. Now we're set up and ready to submit the job.

The Mapper class sets up a few member variables as follows:

 f col_pos: This is initialized to a value supplied in the configuration. It allows users
to change which column to parse and apply the count distinct operation on.

 f pattern: This defines the column's split point for each row based on tabs.

 f outKey: This is a class member that holds output values. This avoids having to
create a new instance for each output that is written.

 f outValue: This is an integer representing one occurrence of the given key. It is
similar to the WordCount example.

The map() function splits each incoming line's value and extracts the string located at col_
pos. We reset the internal value for outKey to the string found on that line's position. For our
example, this will be the IP value for the row. We emit the value of the newly reset outKey
variable along with the value of outValue to mark one occurrence of that given IP address.

Without the assistance of the combiner, this would present the reducer with an iterable
collection of 1s to be counted.

The following is an example of a reducer {key, value:[]} without a combiner:

{10.10.1.1, [1,1,1,1,1,1]} = six occurrences of the IP "10.10.1.1".

The implementation of the reduce() method will sum the integers and arrive at the correct
total, but there's nothing that requires the integer values to be limited to the number 1. We
can use a combiner to process the intermediate key-value pairs as they are output from each
mapper and help improve the data throughput in the shuffle phase. Since the combiner is
applied against the local map output, we may see a performance improvement as the amount
of data we need to transfer for an intermediate key/value can be reduced considerably.

Instead of seeing {10.10.1.1, [1,1,1,1,1,1]}, the combiner can add the 1s and replace the
value of the intermediate value for that key to {10.10.1.1, [6]}. The reducer can then sum the
various combined values for the intermediate key and arrive at the same correct total. This is
possible because addition is both a commutative and associative operation. In other words:

 f Commutative: The order in which we process the addition operation against the
values has no effect on the final result. For example, 1 + 2 + 3 = 3 + 1 + 2.

 f Associative: The order in which we apply the addition operation has no effect on the
final result. For example, (1 + 2) + 3 = 1 + (2 + 3).

For counting the occurrences of distinct IPs, we can use the same code in our reducer as a
combiner for output in the map phase.

Chapter 6

155

When applied to our problem, the normal output with no combiner from two separate
independently running map tasks might look like the following where {key: value[]} is equal
to the intermediate key-value collection:

 f Map Task A = {10.10.1.1, [1,1,1]} = three occurrences

 f Map Task B = {10.10.1.1, [1,1,1,1,1,1]} = six occurrences

Without the aid of a combiner, this will be merged in the shuffle phase and presented to a
single reducer as the following key-value collection:

 f {10.10.1.1, [1,1,1,1,1,1,1,1,1]} = nine total occurrences

Now let's revisit what would happen when using a Combiner against the exact same sample
output:

Map Task A = {10.10.1.1, [1,1,1]} = three occurrences

 f Combiner = {10.10,1,1, [3] = still three occurrences, but reduced for this mapper.

Map Task B = {10.10.1.1, [1,1,1,1,1,1] = six occurrences

 f Combiner = {10.10.1.1, [6] = still six occurrences

Now the reducer will see the following for that key-value collection:

 f {10.10.1.1, [3,6]} = nine total occurrences

We arrived at the same total count for that IP address, but we used a combiner to limit the
amount of network I/O during the MapReduce shuffle phase by pre-reducing the intermediate
key-value output from each mapper.

There's more...
The combiner can be confusing to newcomers. Here are some useful tips:

The Combiner does not always have to be the same class as
your Reducer
The previous recipe and the default WordCount example show the Combiner class being
initialized to the same implementation as the Reducer class. This is not enforced by the
API, but ends up being common for many types of distributed aggregate operations such
as sum(), min(), and max(). One basic example might be the min() operation of the
Reducer class that specifically formats output in a certain way for readability. This will
take a slightly different form from that of the min() operator of the Combiner class,
which does not care about the specific output formatting.

Big Data Analysis

156

Combiners are not guaranteed to run
Whether or not the framework invokes your combiner during execution depends on the
intermediate spill file size from each map output, and is not guaranteed to run for every
intermediate key. Your job should not depend on the combiner for correct results, it should
be used only for optimization.

You can control the spill file threshold when MapReduce tries to combine intermediate
values with the configuration property min.num.spills.for.combine.

Using Hive date UDFs to transform and sort
event dates from geographic event data

This recipe will illustrate the efficient use of the Hive date UDFs to list the 20 most recent
events and the number of days between the event date and the current system date.

Getting ready
Make sure you have access to a pseudo-distributed or fully-distributed Hadoop cluster
with Apache Hive 0.7.1 installed on your client machine and on the environment path for
the active user account.

This recipe depends on having the Nigera_ACLED_cleaned.tsv dataset loaded into a Hive
table named acled_nigeria_cleaned with the fields mapped to the respective datatypes.

Issue the following command to the Hive client to see the mentioned fields:

describe acled_nigeria_cleaned

You should see the following response:

OK

Loc string

event_date string

event_type string

actor string

latitude double

longitude double

source string

fatalities int

Chapter 6

157

How to do it...
Perform the following steps to utilize Hive UDFs for sorting and transformation:

1. Open a text editor of your choice, ideally one with SQL syntax highlighting.

2. Add the inline creation and transform syntax:
SELECT event_type,event_date,days_since FROM (
 SELECT event_type,event_date,
 datediff(to_date(from_unixtime(unix_timestamp())),
 to_date(from_unixtime(
 unix_timestamp(event_date,
 'yyyy-MM-dd')))) AS days_since
 FROM acled_nigeria_cleaned) date_differences
 ORDER BY event_date DESC LIMIT 20;

3. Save the file as top_20_recent_events.sql in the active folder.

4. Run the script from the operating system shell by supplying the –f option to the
Hive client. You should see the following five rows appear first in the output console:

OK

Battle-No change of territory 2011-12-31 190

Violence against civilians 2011-12-27 194

Violence against civilians 2011-12-25 196

Violence against civilians 2011-12-25 196

Violence against civilians 2011-12-25 196

How it works...
Let's start with the nested SELECT subqueries. We select three fields from our Hive table
acled_nigeria_cleaned: event_type, event_date, and the result of calling the UDF
datediff(), which takes as arguments an end date and a start date. Both are expected
in the form yyyy-MM-dd. The first argument to datediff() is the end date, with which we
want to represent the current system date. Calling unix_timestamp() with no arguments
will return the current system time in milliseconds. We send that return value to from_
unixtimestamp() to get a formatted timestamp representing the current system date in
the default Java 1.6 format (yyyy-MM-dd HH:mm:ss). We only care about the date portion,
so calling to_date() with the output of this function strips the HH:mm:ss. The result is the
current date in the yyyy-MM-dd form.

Big Data Analysis

158

The second argument to datediff() is the start date, which for our query is the event_
date. The series of function calls operate in almost the exact same manner as our previous
argument, except that when we call unix_timestamp(), we must tell the function that
our argument is in the SimpleDateFormat format that is yyyy-MM-dd. Now we have both
start_date and end_date arguments in the yyyy-MM-dd format and can perform the
datediff() operation for the given row. We alias the output column of datediff() as
days_since for each row.

The outer SELECT statement takes these three columns per row and sorts the entire output
by event_date in descending order to get reverse chronological ordering. We arbitrarily limit
the output to only the first 20.

The net result is the 20 most recent events with the number of days that have passed since
that event occurred.

There's more...
The date UDFs can help tremendously in performing string date comparisons. Here are some
additional pointers:

Date format strings follow Java SimpleDateFormat guidelines
Check out the Javadocs for SimpleDateFormat to learn how your custom date strings
can be used with the date transform UDFs.

Default date and time formats
 f Many of the UDFs operate under a default format assumption.

 f For UDFs requiring only date, your column values must be in the form yyyy-MM-dd.

 f For UDFs that require date and time, your column values must be in the form yyyy-
MM-dd HH:mm:ss.

See also
 f Using Hive to build a per-month report of fatalities over geographic event data

Chapter 6

159

Using Hive to build a per-month report of
fatalities over geographic event data

This recipe will show a very simple analytic that uses Hive to count fatalities for every month
appearing in the dataset and print the results to the console.

Getting ready
Make sure you have access to a pseudo-distributed or fully-distributed Hadoop cluster
with Apache Hive 0.7.1 installed on your client machine and on the environment path for
the active user account.

This recipe depends on having the Nigera_ACLED_cleaned.tsv dataset loaded into a
Hive table named acled_nigeria_cleaned with the following fields mapped to the
respective datatypes.

Issue the following command to the Hive client:

describe acled_nigeria_cleaned

You should see the following response:

OK

loc string

event_date string

event_type string

actor string

latitude double

longitude double

source string

fatalities int

How to do it...
Follow the steps to use Hive for report generation:

1. Open a text editor of your choice, ideally one with SQL syntax highlighting.

Big Data Analysis

160

2. Add the inline creation and transformation syntax:
SELECT from_unixtime(unix_timestamp(event_date, 'yyyy-MM-dd'),
'yyyy-MMM'),
 COALESCE(CAST(sum(fatalities) AS STRING), 'Unknown')
 FROM acled_nigeria_cleaned
 GROUP BY from_unixtime(unix_timestamp(event_date, 'yyyy-MM-
dd'),'yyyy-MMM');

3. Save the file as monthly_violence_totals.sql in the active folder.

4. Run the script from the operating system shell by supplying the –f option to the
Hive client. You should see the following three rows appear first in the output console.
Note that the output is sorted lexicographically, and not on the order of dates.

OK

1997-Apr 115

1997-Aug 4

1997-Dec 26

How it works...
The SELECT statement uses unix_timestamp() and from_unixtime() to reformat the
event_date for each row as just a year-month concatenated field. This is also in the GROUP
BY expression for totaling fatalities using sum().

The coalesce() method returns the first non-null argument passed to it. We pass as the
first argument, the value of fatalities summed for that given year-month, cast as a string. If
that value is NULL for any reason, return the constant Unknown. Otherwise return the string
representing the total fatalities counted for that year-month combination. Print everything to
the console over stdout.

There's more...
The following are some additional helpful tips related to the code in this recipe:

The coalesce() method can take variable length arguments.
As mentioned in the Hive documentation, coalesce() supports one or more arguments.
The first non-null argument will be returned. This can be useful for evaluating several
different expressions for a given column before deciding the right one to choose.

The coalesce() will return NULL if no argument is non-null. It's not uncommon to provide
a type literal to return if all other arguments are NULL.

Chapter 6

161

Date reformatting code template
Having to reformat dates stored in your raw data is very common. Proper use of from_
unixtime() and unix_timestamp() can make your life much easier.

Remember this general code template for concise date format transformation in Hive:

from_unixtime(unix_timestamp(<col>,<in-format>),<out-format>);

See also
 f Using Hive date UDFs to transform and sort event dates from geographic event data

Implementing a custom UDF in Hive to help
validate source reliability over geographic
event data

There are many operations you will want to repeat across various data sources and tables
in Hive. For this scenario, it makes sense to write your own user-defined function (UDF). You
can write your own subroutine in Java for use on any Writable input fields and to invoke your
function from Hive scripts whenever necessary. This recipe will walk you through the process
of creating a very simple UDF that takes a source and returns yes or no for whether that
source is reliable.

Getting ready
Make sure you have access to a pseudo-distributed or fully-distributed Hadoop cluster
with Apache Hive 0.7.1 installed on your client machine and on the environment path for
the active user account.

This recipe depends on having the Nigera_ACLED_cleaned.tsv dataset loaded into a
Hive table with the name acled_nigeria_cleaned with the following fields mapped to
the respective datatypes.

Issue the following command to the Hive client:

describe acled_nigeria_cleaned;

You should see the following response:

OK

loc string

Big Data Analysis

162

event_date string

event_type string

actor string

latitude double

longitude double

source string

fatalities int

Additionally, you will need to place the following recipe's code into a source package for
bundling within a JAR file of your choice. This recipe will use <myUDFs.jar> as a reference
point for your custom JAR file and <fully_qualified_path_to_TrustSourceUDF> as
a reference point for the Java package your class exists within. An example of a fully qualified
path for a pattern would be java.util.regex.Pattern.

In addition to the core Hadoop libraries, your project will need to have hive-exec and
hive-common JAR dependencies on the classpath for this to compile.

How to do it...
Perform the following steps to implement a custom Hive UDF:

1. Open a text editor/IDE of your choice, preferably one with Java syntax highlighting.

2. Create TrustSourceUDF.java at the desired source package. Your class should
exist at some package <fully_qualified_path>.TrustSourceUDF.class.

3. Enter the following source as the implementation for the TrustSourceUDF class:
import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;
import java.lang.String;import java.util.HashSet;
import java.util.Set;

public class TrustSourceUDF extends UDF {

 private static Set<String> untrustworthySources = new
HashSet<String>();
 private Text result = new Text();

 static {
 untrustworthySources.add("");
 untrustworthySources.add("\"\"\"
 http://www.afriquenligne.fr/3-soldiers\"");
 untrustworthySources.add("Africa News Service");

Chapter 6

163

 untrustworthySources.add("Asharq Alawsat");
 untrustworthySources.add("News Agency of Nigeria (NAN)");
 untrustworthySources.add("This Day (Nigeria)");
 }

 @Override
 public Text evaluate(Text source) {

 if(untrustworthySources.contains(source.toString())) {
 result.set("no");
 } else {
 result.set("yes");
 }
 return result;
 }
}

4. Build the containing JAR <myUDFs.jar> and test your UDF through the Hive client.
Open a Hive client session through the command shell. Hive should already be on
the local user environment path. Invoke the Hive shell with the following command:
hive

5. Add the JAR file to the Hive session's classpath:
 add jar /path/to/<myUDFs.jar>;

You will know that the preceding operation succeeded if you see the following
messages indicating that the JAR has been added to the classpath and the
distributed cache:

Added /path/to/<myUDFs.jar> to class path

Added resource: /path/to/<myUDFs.jar>

6. Create the function definition trust_source as an alias to TrustSourceUDF at
whatever source package you specified in your JAR:
create temporary function trust_source as '<fully_qualified_path_
to_TrustSourceUDF>';

You should see the shell prompt you that the command executed successfully. If you
see the following error, it usually indicates your class was not found on the classpath:

FAILED: Execution Error, return code 1 from org.apache.hadoop.
hive.ql.exec.FunctionTask

7. Test the function with the following query. You should see mostly yes printed on each
line of the console, with a few no's here and there:

select trust_source(source) from acled_nigeria_cleaned;

Big Data Analysis

164

How it works...
The class TrustSourceUDF extends UDF. No methods are required for implementation;
however, in order for the class to function at Hive runtime as a UDF, your subclass must
override evaluate(). You can have one or more overloaded evaluate() methods with
different arguments. Ours only needs to take in a source value to check.

During class initialization, we set up a static instance of the java.util.Set class named
untrustworthySources. Within a static initialization block, we set up a few sources by
their names to be flagged as unreliable.

The entries here are purely arbitrary and should not be considered
reliable or unreliable outside of this recipe.

We flag an empty source as unreliable.

When the function is invoked, it expects a single Text instance to be checked against the
sources we've flagged as unreliable. Return yes or no depending on whether the given
source appears in the set of unreliable sources or not. We set up the private Text instance
to be re-used every time the function is called.

Once the JAR file containing the class is added to the classpath, and we set up our temporary
function definition, we can now use the UDF across many different queries.

There's more...
User-defined functions are a very powerful feature within Hive. The following sections list a
bit more information regarding them:

Check out the existing UDFs
The Hive documentation has a great explanation of the built-in UDFs bundled with
the language. A great write up is available at https://cwiki.apache.org/
confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-
BuiltinAggregateFunctions%28UDAF%29.

To see which functions are available in your specific version of Hive, issue the following
command in the Hive shell.

show functions;

Once you pinpoint a function that looks interesting, learn more information about it from the
Hive wiki or directly from the Hive shell by executing the following command:

describe function <func>;

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-BuiltinAggregateFunctions%28UDAF%29
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-BuiltinAggregateFunctions%28UDAF%29
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-BuiltinAggregateFunctions%28UDAF%29

Chapter 6

165

User-defined table and aggregate functions
Hive UDFs do not need to have a one-to-one interaction for input and output. The API allows
the generation of many outputs from one input (GenericUDTF) as well as custom aggregate
functions that take a list of input rows and output a single value (UDAF).

Export HIVE_AUX_JARS_PATH in your environment
Adding JAR files dynamically to the classpath is useful for testing and debugging, but can
be cumbersome if you have many libraries you repeatedly wish to use. The Hive command line
interpreter will automatically look for the existence of HIVE_AUX_JARS_PATH in the executing
user's environment. Use this environment variable to set additional JAR paths that will always
get loaded in the classpath of new Hive sessions for that client machine.

See also
 f Using Hive date UDFs to transform and sort event dates from geographic event data

 f Using Hive to build a per-month report of fatalities over geographic event data

Marking the longest period of non-violence
using Hive MAP/REDUCE operators and
Python

The Hive query language provides facilities to control the MapReduce dataflow and inject
your own custom map, and to reduce scripts at each stage. When used properly, this is a
very powerful technique for writing concise MapReduce programs using minimal syntax.

This recipe will show a complete example of how to write custom MapReduce control flow
using different operators in Hive. The analytic will specifically look for the longest gap in
events for each location to get an idea of how frequently violence occurs in that location.

Getting ready
Make sure you have access to a pseudo-distributed or fully-distributed Hadoop cluster
with Apache Hive 0.7.1 installed on your client machine and on the environment path for
the active user account.

Your cluster will also need Python 2.7 or greater installed on each node and available on
the environment path for the Hadoop user. The script shown in this recipe assumes an
installation at /usr/bin/env python. If this does not match your installation, change
the script accordingly.

Big Data Analysis

166

This recipe depends on having the Nigeria_ACLED_cleaned.tsv dataset loaded into
a Hive table named acled_nigeria_cleaned with the following fields mapped to the
respective datatypes.

Issue the following command to the Hive client:

describe acled_nigeria_cleaned;

You should see the following response:

OK

loc string

event_date string

event_type string

actor string

latitude double

longitude double

source string

fatalities int

How to do it...
Perform the following steps to mark the longest period of non-violence using Hive:

1. Open a text editor of your choice, ideally one with SQL and Python syntax highlighting.

2. Add the following inline creation and transform syntax:
SET mapred.child.java.opts=-Xmx512M;

DROP TABLE IF EXISTS longest_event_delta_per_loc;
CREATE TABLE longest_event_delta_per_loc (
 loc STRING,
 start_date STRING,
 end_date STRING,
 days INT
);

ADD FILE calc_longest_nonviolent_period.py;
FROM (
 SELECT loc, event_date, event_type
 FROM acled_nigeria_cleaned
 DISTRIBUTE BY loc SORT BY loc, event_date
) mapout
INSERT OVERWRITE TABLE longest_event_delta_per_loc
REDUCE mapout.loc, mapout.event_date, mapout.event_type
USING 'python calc_longest_nonviolent_period.py'
AS loc, start_date, end_date, days;

Chapter 6

167

3. Save the file in the local working folder as longest_nonviolent_periods_per_
location.sql.

4. Create a new file in your text editor with the name calc_longest_nonviolent_
period.py and save it in the same working folder as longest_nonviolent_
periods_per_location.sql.

5. Add the Python syntax. Python is sensitive to indentation. Keep that in mind if you
are cutting and pasting this code:
#!/usr/bin/python
import sys
from datetime import datetime, timedelta

current_loc = "START_OF_APP"
(prev_date, start_date, end_date, start_time_obj, end_time_obj,
current_diff)=('', '', '', None, None, timedelta.min)
for line in sys.stdin:
 (loc,event_date,event_type) = line.strip('\n').split('\t')
 if loc != current_loc and current_loc != "START_OF_APP":
 if end_date != '':
 print '\t'.join([current_loc,start_date,event_
date,str(current_diff.days)])
 (prev_date, start_date, end_date, start_time_obj, end_
time_obj,current_diff)=('', '', '', None, None, timedelta.min)
 end_time_obj = datetime.strptime(event_date,'%Y-%m-%d')
 current_loc = loc
 if start_time_obj is not None: # implies > 2 events
 diff = end_time_obj - start_time_obj
 if diff > current_diff:
 current_diff = diff # set the current max time delta
 start_date = prev_date
 end_date = event_date
 prev_date = event_date
 start_time_obj = end_time_obj

6. Run the script from the operating system's shell by supplying the –f option to the
Hive client:
hive –f longest_nonviolent_periods_per_location.sql

7. Issue the following query directly to the Hive shell. You should see rows printed to
the console in no particular order:

hive –e "select * from longest_event_delta_per_loc;"

Big Data Analysis

168

How it works...
Let's start with the Hive script we created. The first line is simply to force a certain JVM heap
size in our execution. You can set this to whatever is appropriate for your cluster. For the
ACLED Nigeria dataset, 512 MB is more than enough.

Then we create our table definition for the output, dropping any existing tables with a
matching name longest_event_delta_per_loc. The table requires four fields per
record: loc for the location, start_date to hold the value of the event_date field of the
lower bound, end_date to hold the value of event_date field of the upper bound, and
days to show the total number of days elapsed between the events.

We then add the file calc_longest_nonviolent_period.py to the distributed cache
for use across the different reducer JVMs. This will be used as our reduce script, but first we
must organize the map output. The inner SELECT statement grabs loc, event_date, and
event_type from the acled_nigeria_cleaned table in Hive. The DISTRIBUTE BY loc
statement tells Hive to guarantee that all rows with matching values for loc go to the same
reducer. SORT BY loc, event_date tells Hive to sort the data as it arrives to each reducer
by the combination of loc and event_date. Now the same reducer can process every row
corresponding to each location locally, and in the sorted order of event_date.

We alias the output of this SELECT statement to mapout and use the shorthand REDUCE
operator to process each row from mapout. The USING clause lets us supply a custom Python
script to read each record as it comes over stdin. The AS operator lets us map the delimited
fields that are output by the script over stdout to pipe into the fields of the receiving table.

The Python script calc_longest_nonviolent_period.py will be used by the reduce
stage to compute the longest time gap between the events for each location. Since we have
guaranteed that all records with a common loc value are at the same reducer and that those
records are in the date-sorted order for each location, we are now in a position to understand
how the Python script works.

In the Python script calc_longest_nonviolent_period.py, we start with #!/usr/
bin/python as a hint to the shell on how to execute the script. We need to import sys to
use the stdin and stdout operations. We also need the datetime and timedelta class
definitions from the datetime package.

The script operates very procedurally and can be a bit difficult to follow. First we declare
current_loc and initialize its value to START_OF_APP as a flag to the print out conditional.
We then set up several different variables to hold different placeholder values to be used on
a per-location basis by the for loop.

 f prev_date: This holds the last observed event_date for the loc value. It is blank
if it's the start of the app, or holds a new location value.

 f start_date: This holds the lower bound for the longest currently observed time
delta between events for that value of loc.

Chapter 6

169

 f end_date: This holds the upper bound for the longest currently observed time
elapsed between events for the value of current_loc.

 f start_time_obj: This holds the most recently iterated datetime object, or None
if it's the start of the app, or holds a new location value.

 f end_time_obj: This holds the current event_date datetime object, or None if
it's the start of the app, or holds a new location value.

 f current_diff: This holds the time delta for the current longest observed time
elapsed between events for the current_loc, or the lowest possible time delta
if it's the start of the app, or a new location value.

The for loop reads rows over stdin that have already been sorted by the combination of
loc and event_date. We parse each row into variables representing the column values
by first stripping any additional newlines and splitting the line on tab characters.

The first conditional is skipped as current_loc is equal to START OF APP. We have
only begun processing the first row across all locations on that reducer, and have nothing
to output yet. Should we have a value for loc that is different from the value of current_
loc, and we are not at the start of the application, then that is a signal that we are done
processing the rows for current_loc, and can safely output the longest time delta for
events in that location. Should end_date still be set to an empty string, then that indicates
we only saw one event for that location. In this scenario, we do not output anything for that
location. Finally, we reset the six placeholder variables previously explained, so that we may
accurately process the records for the next location.

Following the conditional, we immediately set the value of current_loc that we are
processing equal to loc, to avoid unnecessary entry of the mentioned conditional on the
next iteration when we have not yet transitioned locations. We set end_time_obj to the
value of event_date for the current row. If start_time_obj is set to None, then that
means we are on the first row for that location and cannot yet do a time delta comparison.
Whether or not start_time_obj is set to None, at the end of the loop we set prev_date
equal to event_date and start_time_obj equal to end_time_obj of the current
iteration. By doing so, on the next iteration, start_time_obj will hold the event_date of
the previous record, while end_time_obj will hold the event_date of the current record.

When start_time_obj is no longer set to None after the first iteration for a given location,
we can begin doing diff comparisons on these two datetime objects. Subtracting start_
time_obj from end_time_obj yields a time delta object, which if larger than the current_
diff value, gets set as the value for current_diff. In doing so, we capture the longest
elapsed time period for that location between events. We also set the values of start_date
and end_date for easy output later, once we are done processing this location. As mentioned
earlier, whether or not we reset current_diff, we then change prev_date to point to
event_date and start_time_obj equal to the current end_time_obj.

Big Data Analysis

170

The next time the loop encounters the condition where loc is not equal to current_loc,
we output the currently held longest time difference between events, before we move onto
the next event. Each print to stdout writes a row into the receiving Hive table that holds
each location held by current_loc, the lower_bound event_date string held by
start_date, the upper bound event_date string held by end_date, and the total
number of days elapsed between those two dates held by current_diff.days.

There's more...
Here are a few additional notes on some of the operations touched upon in this recipe:.

SORT BY versus DISTRIBUTE BY versus CLUSTER BY versus
ORDER BY
These four operator variants always cause confusion to Hive beginners. Here's a quick
comparison so you'll know which one is appropriate for your use case:

 f DISTRIBUTE BY: Rows with matching column values will partition to the same
reducer. When used alone, it does not guarantee sorted input to the reducer.

 f SORT BY: This dictates which columns to sort by when ordering reducer input records.

 f CLUSTER BY: This is a shorthand operator to perform both SORT BY and
DISTRIBUTE BY operations on a group of columns.

 f ORDER BY: This is similar to the traditional SQL operator. Sorted order is maintained
across all of the output from every reducer. Use this with caution as it can force all
of the output records to a single reducer to perform the sorting. Usage with LIMIT
is strongly recommended.

MAP and REDUCE keywords are shorthand for SELECT
TRANSFORM
The Hive keywords MAP and REDUCE are shorthand notations for SELECT TRANSFORM, and
do not force the query execution to jump around stages. You can use any one of the three
and achieve the same functional results. They are simply for query readability purposes.

See also
 f The Using Hive and Python to clean and transform geographical event data in recipe

Chapter 3, Extracting and Transforming Data

Chapter 6

171

Calculating the cosine similarity of artists in
the Audioscrobbler dataset using Pig

Cosine similarity is used to measure the similarity of two vectors. In this recipe, it will be used
to find the similarity of artists based on the number of times Audioscrobbler users have added
each user to their playlist. The idea is to show how often users play both artist 1 and artist 2.

Getting ready
Download the Audioscrobbler dataset from http://www.packtpub.com/support.

How to do it...
Perform the following steps to calculate cosine similarity using Pig:

1. Copy the artist_data.txt and user_artist_data.txt files into HDFS:
hadoop fs –put artist_data.txt user_artist_data.txt /data/
audioscrobbler/

2. Load the data into Pig:
plays = load '/data/audioscrobbler/user_artist_data.txt'
 using PigStorage(' ') as (user_id:long, artist_id:long,
playcount:long);

artist = load '/data/audioscrobbler/artist_data.txt' as (artist_
id:long, artist_name:chararray);

3. Sample the user_artist_data.txt file:
plays = sample plays .01;

4. Normalize the play counts to 100:
user_total_grp = group plays by user_id;

user_total = foreach user_total_grp generate group as user_id,
SUM(plays.playcount) as totalplays;

plays_user_total = join plays by user_id, user_total by user_id
using 'replicated';

norm_plays = foreach plays_user_total generate user_total::user_id
as user_id, artist_id, ((double)playcount/(double)totalplays) *
100.0 as norm_play_cnt;

Big Data Analysis

172

5. Get artist pairs for each user:
norm_plays2 = foreach norm_plays generate *;

play_pairs = join norm_plays by user_id, norm_plays2 by user_id
using 'replicated';

play_pairs = filter play_pairs by norm_plays::plays::artist_id !=
norm_plays2::plays::artist_id;

6. Calculate cosine similarity:
cos_sim_step1 = foreach play_pairs generate ((double)norm_
plays::norm_play_cnt) * (double)norm_plays2::norm_play_cnt) as
dot_product_step1, ((double)norm_plays::norm_play_cnt *(double)
norm_plays::norm_play_cnt) as play1_sq;
((double)norm_plays2::norm_play_cnt *(double) norm_plays2::norm_
play_cnt) as play2_sq;

cos_sim_grp = group cos_sim_step1 by (norm_plays::plays::artist_
id, norm_plays2::plays::artist_id);

cos_sim_step2 = foreach cos_sim_grp generate flatten(group),
COUNT(cos_sim_step1.dot_prodct_step1) as cnt, SUM(cos_sim_step1.
dot_product_step1) as dot_product, SUM(cos_sim_step1.norm_
plays::norm_play_cnt) as tot_play_sq, SUM(cos_sim_step1.norm_
plays2::norm_play_cnt) as tot_play_sq2;

cos_sim = foreach cos_sim_step2 generate group::norm_
plays::plays::artist_id as artist_id1, group::norm_plays2::plays_
artist_id as artist_id2, dot_product / (tot_play_sq1 * tot_play_
sq2) as cosine_similarity;

7. Get the artist's name:
art1 = join cos_sim by artist_id1, artist by artist_id using
'replicated';
art2 = join art1 by artist_id2, artist by artist_id using
'replicated';
art3 = foreach art2 generate artist_id1, art1::artist::artist_name
as artist_name1, artist_id2, artist::artist_name as artist_name2,
cosin_similarity;

8. To output the top 25 records:

top = order art3 by cosine_similarity DESC;
top_25 = limit top 25;
dump top25;

Chapter 6

173

The output would be:

(1000157,AC/DC,3418,Hole,0.9115799166673817)
(829,Nas,1002216,The Darkness,0.9110152004952198)
(1022845,Jessica Simpson,1002325,Mandy Moore,0.9097097460071537)
(53,Wu-Tang Clan,78,Sublime,0.9096468367168238)
(1001180,Godsmack,1234871,Devildriver,0.9093019011575069)
(1001594,Adema,1007903,Maroon 5,0.909297052154195)
(689,Bette Midler,1003904,Better Than Ezra,0.9089467492461345)
(949,Ben Folds Five,2745,Ladytron,0.908736095810886)
(1000388,Ben Folds,930,Eminem,0.9085664586931873)
(1013654,Who Da Funk,5672,Nancy Sinatra,0.9084521262343653)
(1005386,Stabbing Westward,30,Jane's Addiction,0.9075360259222892)
(1252,Travis,1275996,R.E.M.,0.9071980963712077)
(100,Phoenix,1278,Ryan Adams,0.9071754511713067)
(2247,Four Tet,1009898,A Silver Mt. Zion,0.9069623744896833)
(1037970,Kanye West,1000991,Alison Krauss,0.9058717234023009)
(352,Beck,5672,Nancy Sinatra,0.9056851798338253)
(831,Nine Inch Nails,1251,Morcheeba,0.9051453756031981)
(1007004,Journey,1005479,Mr. Mister,0.9041311825160151)
(1002470,Elton John,1000416,Ramones,0.9040551837635081)
(1200,Faith No More,1007903,Maroon 5,0.9038274644717641)
(1002850,Glassjaw,1016435,Senses Fail,0.9034604126636377)
(1004294,Thursday,2439,HiM,0.902728300518356)
(1003259,ABBA,1057704,Readymade,0.9026955950032872)
(1001590,Hybrid,791,Beenie Man,0.9020872203833108)
(1501,Wolfgang Amadeus Mozart,4569,Simon &
Garfunkel,0.9018860912385024)

How it works...
The load statements tell Pig about the format and datatypes of the data being loaded. Pig
loads data lazily. This means that the load statements at the beginning of this script will not
do any work until another statement is entered that asks for output.

The user_artist_data.txt file is sampled so that a replicated join can be used when it
is joined with itself. This significantly reduces the processing time at the cost of accuracy. The
sample value of .01 is used, meaning that roughly one in hundred rows of data will
be loaded.

A user selecting to play an artist is treated as a vote for that artist. The play counts are
normalized to 100. This ensures that each user is given the same number of votes.

Big Data Analysis

174

A self join of the user_artist_data.txt file by user_id will generate all pairs of artists
that users have added to their playlist. The filter removes duplicates caused by the self join.

The next few statements calculate the cosine similarity. For each pair of artists that users
have added to their playlist, multiply the number of plays for artist 1 by the number of plays
for artist 2. Then output the number of plays for artist 1 and the number of plays for artist
2. Group the previous result by each pair of artists. Sum the multiplication of the number
of plays for artist 1 by the number of plays by artist 2 for each user generated previously as
the dot product. Sum the number of plays for artist 1 by all users. Sum the number of plays
for artist 2 by all users. The cosine similarly is the dot product over the total plays for artist 1
multiplied by the total plays for artist two. The idea is to show how often users play both artist
1 and artist 2.

Trim Outliers from the Audioscrobbler
dataset using Pig and datafu

Datafu is a Pig UDF library open sourced by the SNA team at LinkedIn. It contains many
useful functions. This recipe will use play counts from the Audioscrobbler dataset and
the Quantile UDF from datafu to identify and remove outliers.

Getting ready
 f Download Version 0.0.4 of datafu from https://github.com/linkedin/

datafu/downloads.

 f Uncompress and untar the files. Add the datafu-0.0.4/dist/ datafu-
0.0.4.jar file to a location accessible by Pig.

 f Download the Audioscrobbler dataset from http://www.packtpub.com/
support.

How to do it...
1. Register the datafu JAR file and construct the Quantile UDF:

register /path/to/datafu-0.0.4.jar;
define Quantile datafu.pig.stats.Quantile('.90');

2. Load the user_artist_data.txt file:
plays = load '/data/audioscrobbler.txt'using PigStorage(' ') as
(user_id:long, artist_id:long, playcount:long);

https://github.com/linkedin/datafu/downloads

Chapter 6

175

3. Group all of the data:
plays_grp = group plays ALL;

4. Generate the ninetieth percentile value to be used as the outlier's max:
out_max = foreach plays_grp{
 ord = order plays by playcount;
 generate Quantile(ord.playcount) as ninetieth ;
 }

5. Trim outliers to the ninetieth percentile value:
trim_outliers = foreach plays generate user_id, artist_id,
(playcount>out_max.ninetieth ? out_max.ninetieth : playcount);

6. Store the user_artist_data.txt file with outliers trimmed:

store trim_outliers into '/data/audioscrobble/outliers_trimmed.
bcp';

How it works...
This recipe takes advantage of the datafu library open sourced by LinkedIn. Once a JAR file
is registered, all of its UDFs are available to the Pig script. The define command calls the
constructor of the datafu.pig.stats.Quantile UDF passing it a value of .90. The
constructor of the Quantile UDF will then create an instance that will produce the ninetieth
percentile of the input vector it is passed. The define also aliases Quantile as shorthand
for referencing this UDF.

The user artist data is loaded into a relation named plays. This data is then grouped by ALL.
The ALL group is a special kind of group that creates a single bag containing all of the input.

The Quantile UDF requires that the data it has passed be sorted first. The data is sorted
by play count, and the sorted play count's vector is passed to the Quantile UDF. The sorted
play count simplifies the job of the Quantile UDF. It now picks the value at the ninetieth
percentile position and returns it.

This value is then compared against each of the play counts in the user artist file. If the play
count is greater, it is trimmed down to the value returned by the Quantile UDF, otherwise
the value remains as it is.

The updated user artist file with outliers trimmed is then stored back in HDFS to be used
for further processing.

Big Data Analysis

176

There's more...
The datafu library also includes a StreamingQuantile UDF. This UDF is similar to the
Quantile UDF except that it does not require the data to be sorted before it is used. This
will greatly increase the performance of this operation. However, it does come at a cost.
The StreamingQuantile UDF only provides an estimation of the values.

define Quantile datafu.pig.stats.StreamingQuantile('.90');

7
Advanced Big
Data Analysis

In this chapter, we will cover:

 f PageRank with Apache Giraph

 f Single-source shortest-path with Apache Giraph

 f Using Apache Giraph to perform a distributed breadth-first search

 f Collaborative filtering with Apache Mahout

 f Clustering with Apache Mahout

 f Sentiment classification with Apache Mahout

Introduction
Graph and machine learning problems are hard to solve using the MapReduce framework.
Most of these problems require iterative steps and/or knowledge of complex algorithms,
which can be cumbersome to implement in MapReduce. Luckily, there are two frameworks
available to help with graph and machine learning problems in the Hadoop environment.
Apache Giraph is a graph-processing framework designed to run large-scale algorithms.
Apache Mahout is a framework that provides implementations of distributed machine
learning algorithms.

This chapter will introduce readers to these two frameworks, which are capable of
leveraging the distributed power of MapReduce.

Advanced Big Data Analysis

178

PageRank with Apache Giraph
This recipe is primarily aimed at building and testing the default Apache Giraph PageRank
example, modeled after the Google Pregel implementation. It will demonstrate the steps
involved in submitting and executing a Giraph job to a pseudo-distributed Hadoop cluster.

Getting ready
For first-time Giraph users, we recommend running this recipe using a pseudo-distributed
Hadoop cluster.

For the client machine, you will need Subversion and Maven installed and configured on the
user environment path.

This recipe does not require a full understanding of the Giraph API, but it does assume some
familiarity with Bulk Synchronous Parallel (BSP) and the design goals of vertex-centric APIs
including Apache Giraph and Google Pregel.

How to do it...
Carry out the following steps to build and test the default Giraph PageRank example:

1. Navigate to a base folder and perform an SVN checkout of the latest Giraph source,
located at the official Apache site:
$ svn co https://svn.apache.org/repos/asf/giraph/trunk

2. Change the folder into a trunk and run the build:
$ mvn compile

3. Once the build finishes, navigate to the target folder created in the trunk and you
should see the JAR file giraph-0.2-SNAPSHOT-jar-with-dependencies.jar.

4. Run the following command:
hadoop jar giraph-0.2-SNAPSHOT-jar-with-dependencies.jar org.
apache.giraph.benchmark.PageRankBenchmark -V 1000 -e 1 -s 5 -w 1
-v

5. You should see the job execute and the MapReduce command line output show
success.

6. The Giraph stats counter group in the printout should show the following stats:

INFO mapred.JobClient: Giraph Stats

INFO mapred.JobClient: Aggregate edges=1000

mapred.JobClient: Superstep=6

Chapter 7

179

mapred.JobClient: Last checkpointed superstep=0

mapred.JobClient: Current workers=1

mapred.JobClient: Current master task partition=0

mapred.JobClient: Sent messages=0

mapred.JobClient: Aggregate finished vertices=1000

mapred.JobClient: Aggregate vertices=1000

How it works...
First, we use Subversion to check out the latest source from the official Apache site. Once we
build the JAR file, the PageRankBenchmark example job is available for submission. Before
we are ready to test Giraph, we must set the following command line options:

 f -V: This shows the number of total vertices to run through PageRank. We chose
1000 just for testing. For a more accurate testing we would want millions of vertices
over a fully-distributed cluster.

 f -e: This shows the number of outgoing edges defined for each vertex. This will control
the number of messages that are output during each superstep to any neighboring
vertices, where a neighbor is defined as a vertex connected to another vertex by one
or more edges.

 f -s: This shows the total number of supersteps to run before terminating PageRank.

 f -w: This shows the total number of workers available to handle distinct graph
partitions. Since we are running a pseudo-distributed cluster (single host), it is safe to
limit this to one. In a fully-distributed cluster, we would want multiple workers spread
out across different physical hosts.

 f -v: This activates the verbose mode to follow the job progress on the console.

The job contains no additional classpath dependencies outside of core Hadoop/ZooKeeper. It
can be directly submitted to the cluster via the hadoop jar command from the command line.

The PageRankBenchmark example does not output the results back to HDFS. It is designed
primarily to test and expose certain cluster bottlenecks that might hinder other production
Giraph jobs. Running the job against a large number of vertices with multiple edges may
expose memory constraints, network I/O connectivity issues between workers, and other
potential problems.

There's more...
Apache Giraph is a relatively new open source batch computation framework. The following
tips will help you further your understanding:

Advanced Big Data Analysis

180

Keep up with the Apache Giraph community
Apache Giraph has a very active developer community. The API is constantly being enhanced
with new features, bug fixes, and occasional refactoring. It is a good idea to update your
source from trunk at least once a week. At the time of this writing, Giraph has no public
Maven artifact. This will change in the very near future, but for now SVN is required to pull
source updates.

Read and understand the Google Pregel paper
Somewhere in 2009, Google published a research paper describing in high-level technical
detail their proprietary software, which was made for scalable graph-centric processing based
on the Bulk Synchronous Parallel (BSP) model.

Apache Giraph is an open source implementation of many of the concepts found in this
research paper. Familiarity with the Pregel design will help to explain many components
found in the Giraph codebase.

A basic introduction to BSP can be found on Wikipedia at http://en.wikipedia.org/
wiki/Bulk_Synchronous_Parallel.

See also
 f Single-source shortest-path with Apache Giraph

 f Using Apache Giraph to perform a distributed breadth-first search

Single-source shortest-path with Apache
Giraph

In this recipe, we will implement a variant of the Google Pregel shortest-path implementation
between employees connected via an acyclic directed graph. The code will take a single
source ID, and for all vertices in the graph, will mark the minimum number of hops required
to reach each vertex from the source ID vertex. The employee network is stored in HDFS as a
line-separated list of RDF triples. Resource Description Framework (RDF) is a very effective
data format for representing entities and the relationships between them.

Getting ready
Make sure you have a basic familiarity with Google Pregel/BSP and the Giraph API.

You will need access to a pseudo-distributed Hadoop cluster. The code listed in this recipe
uses a non-split master-worker configuration that is not ideal in fully-distributed environments.
It also assumes that you have familiarity with bash shell scripting.

Chapter 7

181

You will need to load the example dataset gooftech.tsv to an HDFS folder located at
/input/gooftech.

You will also need to package this code inside a JAR file to be executed by the Hadoop
JAR launcher from the shell. The shell script listed in the recipe shows a template for job
submission with the correct classpath dependencies.

How to do it...
Carry out the following steps to implement the shortest path in Giraph:

1. First, we define our custom InputFormat that extends TextInputFormat
to read the employee RDF triples from the text. Save the class as
EmployeeRDFTextInputFormat.java in a package of your choice:
import com.google.common.collect.Maps;
import org.apache.giraph.graph.BspUtils;
import org.apache.giraph.graph.Vertex;
import org.apache.giraph.graph.VertexReader;
import org.apache.giraph.lib.TextVertexInputFormat;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;

import java.io.IOException;
import java.util.Map;
import java.util.regex.Pattern;

public class EmployeeRDFTextInputFormat extends
 TextVertexInputFormat<Text, IntWritable,
NullWritable, IntWritable> {

 @Override
 public VertexReader<Text, IntWritable, NullWritable,
 IntWritable>
 createVertexReader(InputSplit split, TaskAttemptContext context)
 throws IOException {
 return new EmployeeRDFVertexReader(
 textInputFormat.createRecordReader(split, context));
 }

Advanced Big Data Analysis

182

2. We write the custom vertex reader used in the input format as a static inner class:
 public static class EmployeeRDFVertexReader extends
 TextVertexInputFormat.TextVertexReader<Text,
IntWritable, NullWritable, IntWritable> {

 private static final Pattern TAB = Pattern.compile("[\\t]");
 private static final Pattern COLON = Pattern.compile("[:]");
 private static final Pattern COMMA = Pattern.compile("[,]");

 public EmployeeRDFVertexReader(RecordReader<LongWritable,
Text> lineReader) {
 super(lineReader);
 }

3. Override the getCurrentVertex() method. This method is where we use the line
reader to parse our custom vertex objects:
 @Override
 public Vertex<Text, IntWritable, NullWritable, IntWritable>
 getCurrentVertex() throws IOException, InterruptedException {
 Vertex<Text, IntWritable, NullWritable, IntWritable>
 vertex = BspUtils.<Text, IntWritable, NullWritable,
 IntWritable>
 createVertex(getContext().getConfiguration());

 String[] tokens = TAB.split(getRecordReader()
 .getCurrentValue().toString());
 Text vertexId = new Text(tokens[0]);

 IntWritable value = new IntWritable(0);
 String subtoken = COLON.split(tokens[2])[1];
 String[] subs = COMMA.split(subtoken);
 Map<Text, NullWritable> edges =
 Maps.newHashMapWithExpectedSize(subs.length);
 for(String sub : subs) {
 if(!sub.equals("none"))
 edges.put(new Text(sub), NullWritable.get());
 }

 vertex.initialize(vertexId, value, edges, null);

Chapter 7

183

 return vertex;
 }

 @Override
 public boolean nextVertex() throws IOException,
InterruptedException {
 return getRecordReader().nextKeyValue();
 }
 }
}

4. The job setup code, vertex class, and custom output format are all contained in a
single class. Save the following code in a package of your choice to a class named
EmployeeShortestPath.java:
import org.apache.giraph.graph.*;
import org.apache.giraph.lib.TextVertexOutputFormat;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.io.IOException;

/**
 * Value based on number of hops. vertices receiving incoming
messages increment the message
 */
public class EmployeeShortestPath implements Tool{

 public static final String NAME = "emp_shortest_path";

 private Configuration conf;
 private static final String SOURCE_ID = "emp_source_id";

 public EmployeeShortestPath(Configuration
 configuration) {
 conf = configuration;
 }

Advanced Big Data Analysis

184

5. The run() method in the following code snippet sets up the Giraph job configuration:
 @Override
 public int run(String[] args) throws Exception {
 if(args.length < 4) {
 System.err.println(printUsage());
 System.exit(1);
 }
 if(args.length > 4) {
 System.err.println("too many arguments. " +
 "Did you forget to quote the source ID
name ('firstname lastname')");
 System.exit(1);
 }
 String input = args[0];
 String output = args[1];
 String source_id = args[2];
 String zooQuorum = args[3];

 conf.set(SOURCE_ID, source_id);
 conf.setBoolean(GiraphJob.SPLIT_MASTER_WORKER,
 false);
 conf.setBoolean(GiraphJob.USE_SUPERSTEP_COUNTERS,
 false);
 conf.setInt(GiraphJob.CHECKPOINT_FREQUENCY, 0);
 GiraphJob job = new GiraphJob(conf, "single-source
 shortest path for employee: " + source_id);
 job.setVertexClass(EmployeeShortestPathVertex.class);
 job.setVertexInputFormatClass(EmployeeRDFTextInputFormat.
class);
 job.setVertexOutputFormatClass(EmployeeShortestPathOutputForm
at.class);
 job.setZooKeeperConfiguration(zooQuorum);

 FileInputFormat.addInputPath(job.getInternalJob(), new
Path(input));
 FileOutputFormat.setOutputPath(job.getInternalJob(),
removeAndSetOutput(output));

 job.setWorkerConfiguration(1, 1, 100.0f);
 return job.run(true) ? 0 : 1;
 }

Chapter 7

185

6. The following, method force deletes the supplied output folder in HDFS. Use it with
caution. The other methods are required to conform to the Tool interface:
 private Path removeAndSetOutput(String outputDir) throws
IOException {
 FileSystem fs = FileSystem.get(conf);
 Path path = new Path(outputDir);
 fs.delete(path, true);
 return path;
 }

 private String printUsage() {
 return "usage: <input> <output> <single quoted source_id>
<zookeeper_quorum>";
 }

 @Override
 public void setConf(Configuration conf) {
 this.conf = conf;
 }

 @Override
 public Configuration getConf() {
 return conf;
 }

7. The main() method instantiates and submits the job using ToolRunner:
 public static void main(String[] args) throws Exception {
 System.exit(ToolRunner.run(new EmployeeShortestPath(new
Configuration()), args));
 }

8. The static inner class EmployeeShortestPathVertex lets us define a custom
compute method to be used during each superstep:
 public static class EmployeeShortestPathVertex<I extends
WritableComparable,
 V extends Writable, E extends Writable, M extends
Writable> extends EdgeListVertex <Text, IntWritable, NullWritable,
IntWritable>
 {

 private IntWritable max = new IntWritable(Integer.MAX_
VALUE);

Advanced Big Data Analysis

186

 private IntWritable msg = new IntWritable(1);

 private boolean isSource() {
 return getId().toString().equals(
 getConf().get(SOURCE_ID));
 }

 @Override
 public void compute(Iterable<IntWritable> messages)
 throws IOException {
 if(getSuperstep() == 0) {
 setValue(max);
 if(isSource()) {
 for(Edge<Text, NullWritable> e :
 getEdges()) {
 sendMessage(e.getTargetVertexId(),
 msg);
 }
 }
 }
 int min = getValue().get();
 for(IntWritable msg : messages) {
 min = Math.min(msg.get(), min);
 }
 if(min < getValue().get()) {
 setValue(new IntWritable(min));
 msg.set(min + 1);
 sendMessageToAllEdges(msg);
 }
 voteToHalt();
 }
 }

9. The static inner class EmployeeShortestPathOutputFormat lets us define a
custom OutputFormat. The class EmployeeRDFVertexWriter lets us output our
vertex information as Text key-value pairs back to HDFS:
 public static class EmployeeShortestPathOutputFormat extends
TextVertexOutputFormat <Text, IntWritable, NullWritable> {

 private static class EmployeeRDFVertexWriter

Chapter 7

187

 extends TextVertexWriter <Text, IntWritable,
NullWritable> {

 private Text valOut = new Text();

 public EmployeeRDFVertexWriter(
 RecordWriter<Text, Text> lineRecordWriter) {
 super(lineRecordWriter);
 }

 @Override
 public void writeVertex(
 Vertex<Text, IntWritable, NullWritable,
 ?> vertex)
 throws IOException,
 InterruptedException {

 valOut.set(vertex.getValue().toString());
 if(vertex.getValue().get() ==
 Integer.MAX_VALUE)
 valOut.set("no path");
 getRecordWriter().write(vertex.getId(),
 valOut);
 }

 }

 @Override
 public VertexWriter<Text, IntWritable, NullWritable>
 createVertexWriter(TaskAttemptContext context)
 throws IOException, InterruptedException {
 RecordWriter<Text, Text> recordWriter =
 textOutputFormat.getRecordWriter(context);
 return new EmployeeRDFVertexWriter(recordWriter);
 }
 }
}

10. Create the shell script run_employee_shortest_path.sh using the commands
listed in the following code snippet. Change GIRAPH_PATH to match your local path
to the Giraph JAR file and change JAR_PATH to match your local path to the custom
JAR file that you compiled the previous code in.

Advanced Big Data Analysis

188

To use the alias emp_shortest_path your custom JAR file must
use the Hadoop Driver class for its main class.

GIRAPH_PATH=lib/giraph/giraph-0.2-SNAPSHOT-jar-with-dependencies.
jar

HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$GIRAPH_PATH

JAR_PATH=dist/employee_examples.jar

export HADOOP_CLASSPATH

hadoop jar $JAR_PATH emp_shortest_path -libjars $GIRAPH_
PATH,$JAR_PATH /input/gooftech /output/gooftech 'Shanae Dailey'
localhost:2181

11. Run run_employee_shortest_path.sh. The job should be submitted to the
Hadoop cluster. Under /output/gooftech should be a single part file that lists
minimum number of hops required to reach each employee from source ID, or no
path if the employee is not reachable.

How it works...
We start with the custom input format. The Giraph API offers TextVertexInputFormat that
wraps TextInputFormat and LineReader to read vertices stored one per line in a text
file. Currently, the Giraph API requires your records to be sorted in order of the vertex ID. Our
employee dataset is sorted by firstname/lastname, so we satisfy this requirement and
can move forward. In order to create meaningful vertices from our RDF data, it is necessary
that we subclass TextVertexInputFormat to create EmployeeRDFTextInputFormat.
In order to control exactly how our vertices appear, we subclass TextVertexReader and
create EmployeeRDFVertexReader. This allows us to override the getRecordReader()
method in our custom input format to return an instance of our own reader subclass. The
record reader delegates for an instance of the Hadoop LineReader and is responsible for
creating the vertices from the text lines seen in each input split. From here we can override
getCurrentVertex() and create individual vertices from each incoming RDF triple seen
by the line reader. By extending TextVertexReader we don't have to worry about manually
controlling the invocation of getCurrentVertex() for each line. The framework handles
this for us. We simply need to tell the framework how to turn each line of text into a vertex with
one or more edges.

The generic type parameters declared in the definition of EmployeeRDFTextInputFormat
are repeatedly seen in the code. From left to right, they provide the concrete type information
for the vertex ID class, vertex value class, edge value class, and message class. A quick look
at the parent class shows the following generic header:

public abstract class TextVertexInputFormat<I extends
WritableComparable,

Chapter 7

189

 V extends Writable, E extends Writable, M extends Writable>
 extends VertexInputFormat<I, V, E, M>

All four of the generic types must be Writable. The vertex ID class must be
WritableComparable. Currently, Giraph does not support other serialization frameworks.

Our getCurrentVertex() method implementation is very basic. We set up several static
final regex patterns to split the RDF triples properly. The combination firstname/lastname
becomes our vertex ID stored as a Text instance. Each vertex is initialized with a vertex
value of 0 stored as an IntWritable. Each subordinate listed in the comma-delimited list is
referenced as an edge ID; however, we don't need any direct value information for each edge,
and thus NullWritable will suffice for the edge value. For this particular job, our message
types will be IntWritable. This class is reused in the next recipe in this chapter titled Using
Apache Giraph to perform a distributed breadth-first search. For the sake of brevity, this input
format is only explained once here.

Next, we set up our job class. The job setup borrows heavily from the Hadoop MapReduce
Java API. We implement the Tool interface and define four arguments to read from the
command line. This job requires an input folder from HDFS, and an output folder to write
back to HDFS, a source ID to perform single source shortest-path, and a ZooKeeper quorum
to manage the job state. Then we need to define a few other parameters as we are testing
against a pseudo-distributed cluster with limited resources.

conf.setBoolean(GiraphJob.SPLIT_MASTER_WORKER, false);
conf.setBoolean(GiraphJob.USE_SUPERSTEP_COUNTERS, false);
conf.setInt(GiraphJob.CHECKPOINT_FREQUENCY, 0);

SPLIT_MASTER_WORKER tells Giraph whether or not the master process runs on a different
host to the workers. By default, this is set to true, but since we are on a pseudo-distributed
single node setup, this needs to be false. Turning off superstep counters will limit the
verbosity of the MapReduce WebUI for our job. This is can be handy when testing jobs
involving hundreds or potentially thousands of supersteps. Lastly, we turn off checkpointing to
tell Giraph that we do not care about backing up the graph state at any superstep. This works
because we are only testing and are interested in rapid job execution time. In a production
job, it is recommended to checkpoint your graph state regularly at the cost of a slower overall
job runtime. We then instantiate an instance of GiraphJob and pass our configuration
instance to it along with a somewhat descriptive title for the job.

The next three lines of code are critical for the Giraph job to execute properly on your cluster.

job.setVertexClass(EmployeeShortestPathVertex.class);
job.setVertexInputFormatClass(EmployeeRDFTextInputFormat.class);
job.setVertexOutputFormatClass(EmployeeShortestPathOutputFormat.
class);

Advanced Big Data Analysis

190

The first line tells Giraph about our custom Vertex implementation that encapsulates each
vertex in the graph. This houses the application-specific compute() function called at each
superstep. We extend the base class EdgeListVertex to leverage some pre-existing code
for message handling, edge iteration, and member serialization.

Then, we set the ZooKeeper quorum and define a single worker to hold the graph partition. If
your pseudo-distributed cluster can support multiple workers (multiple concurrent map JVMs),
then feel free to increase this limit. Just remember to leave one free map slot for the master
process. Finally, we are ready to submit the job to the cluster.

After the InputFormat handles creating the vertices from the different input splits,
each vertex's compute() function gets invoked. We define the static inner class
EmployeeShortestPathVertex to override the compute() function and implement the
business logic necessary to calculate the shortest path. Specifically, we are interested in the
minimum number of hops required to navigate from the source vertex to every other vertex
connected by one or more pathways in the graph, or no path if the target vertex is not
reachable by the source.

First superstep (S0)
At S0, the function immediately enters the first conditional statement and initializes every
vertex value to the maximum possible integer value. As incoming messages are received,
each vertex compares the integer contained in each message against the currently held
minimum to see if it represents a lower value, therefore the business logic is made a bit
easier by setting the initial minimum value to the maximum possible for the datatype. During
the first superstep, it is critical that the source vertex sends a message to its edges telling the
vertex along that the edge is one hop away from the source. To do this, we define a member
instance msg just for messaging. It is reset and reused every time the vertex needs to send
a message, and helps to avoid unnecessary instantiation.

We need to compare any incoming messages with the currently held minimum hops value
to see if we need to update and notify our edges. Since we are only at S0 there are no
messages, so the value remains as Integer.MAX. Since the minimum value does not
change, we avoid the last conditional branch.

At the end of each superstep for our job, always invoke voteToHalt(). The Giraph
framework will automatically have reactive vertices that have incoming messages at the
next superstep, but we want to render vertices inactive that are temporarily done sending/
receiving messages. Once there are no more messages to process by any vertex in the
graph, the job will stop reactivating vertices and will consider itself finished.

Chapter 7

191

Second superstep (S1)
After the previous superstep, every single vertex in the graph voted to halt the execution.
The only vertex that messaged its edges was the source vertex, therefore the framework will
reactivate only the vertices connected by the source edges. The source vertex told each edge
that they were one hop away, which is less than Integer.MAX and immediately takes the
place as the current vertex value. Each vertex receiving the message turns around and notifies
its edges that they are min + 1 hops away from the source, and the cycle continues.

Should any connected edge receive a message lower than its current vertex value, that
indicates there is a path from the source ID to the current vertex that involves fewer hops,
and we need to re-notify each edge connected to the current vertex.

Eventually, every vertex will know its minimum distance and no more messages will be sent
at the current superstep N. When starting superstep N + 1, there will be no vertices that
need to be reactivated to process incoming messages, and the overall job will finish. Now
we need to output each vertex's current value denoting the minimum number of hops from
the source vertex.

To write the vertex value information back to HDFS as text, we implement a static inner
subclass of TextVertexOutputFormat named EmployeeShortestPathOutputFormat.
This follows a similar inheritance/delegation pattern as our custom InputFormat defined
earlier, except instead of delegating to a custom RecordReader, we use a custom
RecordWriter. We set a Text member variable valOut to reuse while outputting the
integer values as strings. The framework automatically handles invoking writeVertex()
for each vertex contained in our dataset.

If the current vertex value is still equal to Integer.MAX, we know that the graph never
received any incoming messages intended for that vertex, which implies it is not traversable
by the source vertex. Otherwise, we output the minimum number of hops required to traverse
to the current vertex ID from the source ID.

See also
 f Using Apache Giraph to perform a distributed breadth-first search

Advanced Big Data Analysis

192

Using Apache Giraph to perform a
distributed breadth-first search

In this recipe, we will use the Apache Giraph API to implement a distributed breadth-first
search to determine if two employees are connected in the company's network via one
or more pathways. The code will rely on message passing between employee vertices to
determine if a vertex is reachable.

Getting ready
Make sure you have a basic familiarity with Google Pregel/BSP and the Giraph API.

You will need access to a pseudo-distributed Hadoop cluster. The code listed in this recipe
uses a split master worker configuration that is not ideal in fully-distributed environments.
It also assumes familiarity with bash shell scripting.

You will need to load the example dataset gooftech.tsv to an HDFS folder located at /
input/gooftech.

You will also need to package this code inside a JAR file to be executed by the Hadoop JAR
launcher from the shell. The shell script listed in the recipe will show a template for job
submission with the correct classpath dependencies.

How to do it...
Carry out the following steps to perform a breadth-first search in Giraph:

1. Implement EmployeeRDFTextInputFormat.java. See steps 1 to 3 in the How
to do it… section of the Single-source shortest-path with Apache Giraph recipe.

2. The job setup code, vertex class, and custom output format are all contained in a
single class. Save the following code in a package of your choice to a class with the
name EmployeeBreadthFirstSearch.java:
import org.apache.giraph.graph.*;
import org.apache.giraph.lib.TextVertexOutputFormat;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;

Chapter 7

193

import org.apache.hadoop.util.ToolRunner;

import java.io.IOException;

/**
 * Start with specified employee, mark the target if message is
received
 */
public class EmployeeBreadthFirstSearch implements Tool{

 public static final String NAME = "emp_breadth_search";

 private Configuration conf;
 private static final String SOURCE_ID = "emp_src_id";
 private static final String DEST_ID = "emp_dest_id";

 public EmployeeBreadthFirstSearch(Configuration configuration)
{
 conf = configuration;
 }

3. The run() method in the following code sets up the Giraph job configuration:
 @Override
 public int run(String[] args) throws Exception {
 if(args.length < 5) {
 System.err.println(printUsage());
 System.exit(1);
 }
 if(args.length > 5) {
 System.err.println("too many arguments. " +"Did you
forget to quote the source or destination ID name ('firstname
lastname')");
 System.exit(1);
 }
 String input = args[0];
 String output = args[1];
 String source_id = args[2];
 String dest_id = args[3];
 String zooQuorum = args[4];

 conf.set(SOURCE_ID, source_id);
 conf.set(DEST_ID, dest_id);
 conf.setBoolean(GiraphJob.SPLIT_MASTER_WORKER,
 false);
 conf.setBoolean(GiraphJob.USE_SUPERSTEP_COUNTERS,

Advanced Big Data Analysis

194

 false);
 conf.setInt(GiraphJob.CHECKPOINT_FREQUENCY, 0);
 GiraphJob job = new GiraphJob(conf, "determine
connectivity between " + source_id + " and " + dest_id);
 job.setVertexClass(EmployeeSearchVertex.class);
job.setVertexInputFormatClass(EmployeeRDFTextInputFormat.cl
 ass);
 job.setVertexOutputFormatClass(BreadthFirstTextOutputForm
at.class);
 job.setZooKeeperConfiguration(zooQuorum);

 FileInputFormat.addInputPath(job.getInternalJob(),
 new Path(input));
 FileOutputFormat.setOutputPath(job.getInternalJob(),
 removeAndSetOutput(output));

 job.setWorkerConfiguration(1, 1, 100.0f);

 if(job.run(true)) {
 long srcCounter = job.getInternalJob().getCounters().
 getGroup("Search").findCounter("Source
 Id found").getValue();
 long dstCounter =
job.getInternalJob().getCounters().getGroup("Search").
findCounter("Dest Id found").getValue();
 if(srcCounter == 0 || dstCounter == 0) {
 System.out.println("Source and/or Dest Id not
found in dataset. Check your arguments.");
 }
 return 0;
 } else {
 return 1;
 }
 }

4. The following, method force deletes the supplied output folder in HDFS. Use it with
caution. The other methods are required to conform to the Tool interface:
 private Path removeAndSetOutput(String outputDir) throws
IOException {
 FileSystem fs = FileSystem.get(conf);
 Path path = new Path(outputDir);
 fs.delete(path, true);
 return path;
 }

Chapter 7

195

 private String printUsage() {
 return "usage: <input> <output> <single quoted source_id>
<single quoted dest_id> <zookeeper_quorum>";
 }

 @Override
 public void setConf(Configuration conf) {
 this.conf = conf;
 }

 @Override
 public Configuration getConf() {
 return conf;
 }

5. The main() method instantiates and submits the job using ToolRunner:
 public static void main(String[] args) throws Exception {
 System.exit(ToolRunner.run(new
EmployeeBreadthFirstSearch(new Configuration()), args));
 }

6. The static inner class, EmployeeSearchVertex, lets us define a custom compute
method to be used during each superstep:
 public static class EmployeeSearchVertex<I extends
WritableComparable, V extends Writable, E extends Writable, M
extends Writable> extends EdgeListVertex<Text, IntWritable,
NullWritable, IntWritable> {

 private IntWritable msg = new IntWritable(1);

 private boolean isSource() {
 return getId().toString().equals(
 getConf().get(SOURCE_ID));
 }

 private boolean isDest() {
 return getId().toString().equals(
 getConf().get(DEST_ID));
 }

 @Override
 public void compute(Iterable<IntWritable> messages) throws
IOException {
 if(getSuperstep() == 0) {
 if(isSource()) {

Advanced Big Data Analysis

196

 getContext().getCounter("Search", "Source Id
found").increment(1);
 sendMessageToAllEdges(msg);
 } else if(isDest()){
 getContext().getCounter("Search", "Dest Id
found").increment(1l);
 }
 }
 boolean connectedToSourceId = false;
 for(IntWritable msg : messages) {
 if(isDest()) {
 setValue(msg);
 }
 connectedToSourceId = true;
 }
 if(connectedToSourceId)
 sendMessageToAllEdges(msg);
 voteToHalt();
 }
 }

7. The static inner class, BreadthFirstTextOutputFormat, lets us define a custom
OutputFormat. The BreadtFirstTextOutputFormat class lets us output our
vertex information as Text key-value pairs back to HDFS:
 public static class BreadthFirstTextOutputFormat extends
 TextVertexOutputFormat <Text, IntWritable,
NullWritable> {

 private static class EmployeeRDFVertexWriter
 extends TextVertexWriter <Text, IntWritable,
NullWritable> {

 private Text valOut = new Text();
 private String sourceId = null;
 private String destId = null;

 public EmployeeRDFVertexWriter(
 String sourceId, String destId,
RecordWriter<Text, Text> lineRecordWriter) {
 super(lineRecordWriter);
 this.sourceId = sourceId;
 this.destId = destId;
 }

 @Override
 public void writeVertex(
 Vertex<Text, IntWritable, NullWritable, ?>
vertex)
 throws IOException, InterruptedException {

Chapter 7

197

 if(vertex.getId().toString().equals(destId)) {
 if(vertex.getValue().get() > 0) {
 getRecordWriter().write(new Text(sourceId
+ " is connected to " + destId), new Text(""));
 } else {
 getRecordWriter().write(new Text(sourceId
+ " is not connected to " + destId), new Text(""));
 }
 }
 }
 }

 @Override
 public VertexWriter<Text, IntWritable, NullWritable>
 createVertexWriter(TaskAttemptContext context)
 throws IOException, InterruptedException {
 RecordWriter<Text, Text> recordWriter =
 textOutputFormat.getRecordWriter(context);
 String sourceId = context.getConfiguration().
get(SOURCE_ID);
 String destId = context.getConfiguration().get(DEST_
ID);
 return new EmployeeRDFVertexWriter(sourceId, destId,
recordWriter);
 }
 }

}

8. Create the shell script run_employee_connectivity_search.sh using the
commands listed in the following code snippet. Change GIRAPH_PATH to match your
local path to the Giraph JAR file and change JAR_PATH to match the local path to
your own custom JAR file that you compiled using the preceding code.

To use the alias emp_breadth_first, your custom JAR file
must use the Hadoop Driver class as its main class in the
JAR file.

GIRAPH_PATH=lib/giraph/giraph-0.2-SNAPSHOT-jar-with-dependencies.
jar
HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$GIRAPH_PATH
JAR_PATH=dist/employee_examples.jar
export HADOOP_CLASSPATH
hadoop jar $JAR_PATH emp_breadth_search -libjars $GIRAPH_
PATH,$JAR_PATH /input/gooftech /output/gooftech 'Valery Dorado'
'Gertha Linda' localhost:2181

Advanced Big Data Analysis

198

9. Run run_employee_connectivity_search.sh. You should see the job
submitted to the Hadoop cluster. Upon successful completion, you should see
a single part file under /output/gooftech saying Valery Dorado is not
connected to Gertha Linda.

10. Open run_employee_connectivity_search.sh. Change the source ID
to Shoshana Gatton. Save and close the script.

11. Run run_employee_connectivity_search.sh. The output should now
be Shoshana Gatton is connected to Gertha Linda.

How it works...
To understand how the custom InputFormat and job setup works, check out the How it
works… section from the recipe titled Single-source shortest-path using Apache Giraph.
This recipe uses exactly the same input format, and the same job setup, except for the
following differences:

 f The job requires an additional DEST_ID argument to be supplied by the
command line.

 f The Vertex implementation is EmployeeSearchVertex.
 f The OutputFormat subclass is set to the static inner class

BreadthFirstTextOutputFormat. This is explained in more detail in the
following paragraph.

 f We use counters during the job execution to determine if the supplied source/
destination IDs are found in the dataset.

The compute() function inside EmployeeSearchVertex is where we take advantage of
Giraph message passing to determine reachability. Starting at the first superstep, we send a
message to each edge from the source ID. If we find the supplied source IDs and destination
IDs in the dataset vertices, we increment the counters to let the user know. This will help us
quickly see any incorrectly entered command-line arguments for source/destination vertex
IDs. After the first superstep, both these counters should be set to 1. We define a private
constant member variable msg that is set to 1. The actual numeric content of the message
is never used, but by keeping the vertex value as IntWritable we can use the already built
custom InputFormat EmployeeRDFTextInputFormat. If during any superstep a vertex
receives a message, we forward that message along to each of its edges. If the destination
vertex ever receives a message, we set its value to the integer 1 contained in the message.
By the end of the job execution, the destination vertex will have a value of 1, which means it
is connected by one or more edges to the source vertex, or to the initial value of 0, meaning it
never received a message and is not connected.

Chapter 7

199

We define the static inner class BreadthFirstTextOutputFormat to handle the
output formatting. This follows a similar inheritance/delegation pattern to our custom
InputFormat defined earlier, except instead of delegating to a custom RecordReader,
we use a custom RecordWriter. When we instantiate our TextVertexWriter
subclass EmployeeRDFVertexWriter, we pass its references to the configured source
and destination vertex IDs. The framework handles this automatically by calling the
writeVertex() method for each vertex in our dataset. For this job, we are only interested
in printing out whether or not the source vertex is connected by one or more paths to the
destination vertex. If the current vertex we are processing is the destination vertex, we will
printout one of two strings. If the vertex value is greater than 0, then that destination must
have received one or more messages, which is only possible if there exists at least one path
of edge communication between the source and destination. Otherwise, if the value of the
destination vertex is still 0, then we can safely assume that it is not reachable by the source.
For just one pair of source-destination nodes, as we have in this recipe, we could have placed
this business logic directly in the job class and used counters after the execution finished,
but this design is more extensible should we want to use this code to query multiple
destination-source vertex pairs.

There's more...
Programs designed using the Hadoop MapReduce API usually require some additional tuning
once you begin testing at scale. It is not uncommon to completely re-evaluate a chosen design
pattern that simply does not scale. Working with the Giraph API requires the same diligence
and patience.

Apache Giraph jobs often require scalability tuning
This is not always easy to spot initially. You may have a relatively small graph that operates
very well within a given BSP design approach. Suddenly you hit scale and notice all sorts
of errors you never planned for. Try to keep your compute() function small to avoid
complications and aid with troubleshooting. At the time of this writing, Giraph workers
will attempt to hold their assigned graph partitions directly in memory. Minimizing vertex
memory footprint is of the upmost importance. Moreover, many people have to tune their
message passing settings using the parameters located at the top of GiraphJob. You can
control the number of messaging threads used by each worker to communicate with other
workers by setting MSG_NUM_FLUSH_THREADS. By default, Giraph will let each worker open
a communication thread to every other worker in the job. For many Hadoop clusters, this is
not sustainable. Also, consider adjusting the maximum number of messages allowed to be
flushed in bulk using MAX_MESSAGES_PER_FLUSH_PUT. The default value 2000 may not
be adequate for your job.

Advanced Big Data Analysis

200

Collaborative filtering with Apache Mahout
Collaborative filtering is a technique that can be used to discover relationships between
people and items (for example, books and music). It works by examining the preferences of a
set of users, such as the items they purchase, and then determines which users have similar
preferences. Collaborative filtering can be used to build recommender systems. Recommender
systems are used by many companies including Amazon, LinkedIn, and Facebook.

In this recipe, we are going to use Apache Mahout to generate book recommendations based
on a dataset containing people's book preferences.

Getting ready
You will need to download, compile, and install the following:

 f Maven 2.2 or above from http://maven.apache.org/
 f Apache Mahout 0.6 from http://mahout.apache.org/
 f CSV Dump of Book-Crossing Dataset from http://www.informatik.uni-

freiburg.de/~cziegler/BX/

 f Scripts for this chapter from http://packtpub.com/support

Once you have compiled Mahout, add the mahout binary to the system path. In addition, you
must set the HADOOP_HOME environment variable to point to the root folder of your Hadoop
installation. You can accomplish this in the bash shell by using the following commands:

$ export PATH=$PATH:/path/to/mahout/bin

$ export HADOOP_HOME=/opt/mapr/hadoop/hadoop-0.20.2

Next, extract the Book-Crossing Dataset to the folder you are currently working on. You should
see three files named BX-Books.csv, BX-Book-Ratings.csv, and BX-Users.csv.

How to do it...
Carry out the following steps to perform Collaborative filtering in Mahout:

1. Run the clean_book_ratings.py script to transform the BX-Book-Ratings.
csv file into a format the Mahout recommender can use.
$./clean_book_ratings.py BX-Book-Ratings.csv cleaned_book_
ratings.txt

2. Run the clean_book_users.sh bash script to transform the BX-Users.csv file
into a format the Mahout recommender can use. Note that the BX-Users.csv file
should be in the folder you are currently working on:
$./clean_book_users.sh

Chapter 7

201

3. Place both the cleaned_book_ratings.txt and the cleaned_book_users.
txt files into HDFS:
$ hadoop fs –mkdir /user/hadoop/books

$ hadoop fs –put cleaned_book_ratings.txt /user/hadoop/books

$ hadoop fs –put cleaned_book_users.txt /user/hadoop/books

4. Run the Mahout recommender using the ratings and user information we just put
into HDFS. Mahout will launch multiple MapReduce jobs to generate the book
recommendations:
$ mahout recommenditembased --input /user/hadoop/books/ cleaned_
book_ratings.txt --output /user/hadoop/books/recommended
--usersFile /user/hadoop/books/cleaned_book_users.txt -s
SIMILARITY_LOGLIKELIHOOD

5. Examine the results, which are in the format of USERID [RECOMMENDED BOOK
ISBN:SCORE,...]. The output should look similar to the following:
$ hadoop fs -cat /user/hadoop/books/recommended/part* | head -n1

17 [849911788:4.497727,807503193:4.497536,881030392:4.497536,
761528547:4.497536,380724723:4.497536,807533424:4.497536,310203414
:4.497536,590344153:4.497536,761536744:4.497536,531000265:4.497536
]

6. Examine the results in a more human-friendly way using print_user_summaries.
py. To print the recommendations for the first 10 users, use 10 for the last argument
to print_user_summaries.py:

hadoop fs -cat /user/hadoop/books/recommended/part-r-00000 | ./
print_user_summaries.py BX-Books.csv BX-Users.csv BX-Book-Ratings.
csv 10

==========

user id = 114073

rated:

Digital Fortress : A Thriller with: 9

Angels & Demons with: 10

recommended:

Morality for Beautiful Girls (No.1 Ladies Detective Agency)

Q Is for Quarry

The Last Juror

The Da Vinci Code

Deception Point

Advanced Big Data Analysis

202

A Walk in the Woods: Rediscovering America on the Appalachian
Trail (Official Guides to the Appalachian Trail)

Tears of the Giraffe (No.1 Ladies Detective Agency)

The No. 1 Ladies' Detective Agency (Today Show Book Club #8)

The output from print_user_summaries.py shows which books the user rated, and
then it shows the recommendations generated by Mahout.

How it works...
The first steps of this recipe required us to clean up the Book-Crossing dataset. The BX-
Book-Ratings.csv file was in a semicolon-delimited format with the following columns:

 f USER_ID: The user ID assigned to a person

 f ISBN: The book's ISBN the person reviewed

 f BOOK-RATING: The rating a person gave to the book

The Mahout recommendation engine expects the input dataset to be in the following
comma-separated format:

 f USER_ID: The USER_ID must be an integer

 f ITEM_ID: The ITEM_ID must be an integer

 f RATING: The RATING must be an integer that increases in order of preference. For
example, 1 would mean that the user disliked a book intensely, 10 would mean the
user enjoyed the book.

Once the transformation was completed on the BX-Book-Ratings.csv file, we performed
a similar transformation on the BX-Users.csv file. We stripped away most of the information
in the BX-Users.csv file, except for USER_ID.

Finally, we launch the Mahout recommendation engine. Mahout will launch a series
of MapReduce jobs to determine the book recommendations for a given set of users,
specified with the –usersFile flag. In this example, we wanted Mahout to generate
book recommendations for all of the users in the dataset, so we provided the complete
USER_ID list to Mahout. In addition to providing an input path, output path, and user list as
command-line arguments to Mahout, we also specified a fourth parameter -s SIMILARITY_
LOGLIKELIHOOD. The -s flag is used to specify which similarity measure we want Mahout
to use, to compare similar book preferences across all users. This recipe used log likelihood
because it is a simple and effective algorithm, but Mahout supports many more similarity
functions. To see for yourself, run the following command, and examine the options for
the -s flag:

$mahout recommenditembased

Chapter 7

203

See also
 f Clustering with Apache Mahout

 f Sentiment classification with Apache Mahout

Clustering with Apache Mahout
Clustering is a technique that can be used to divide a dataset into related partitions. In this
recipe, we are going to use a specific cluster method called k-means. K-means clustering
attempts to divide a dataset into k clusters by minimizing the distance between points
located around a central point in a cluster.

In this recipe, we will use the Apache Mahout k-means implementation to cluster the words
found in Shakespeare's tragedies.

Getting ready
You will need to download, compile, and install the following:

 f Maven 2.2 or above from http://maven.apache.org

 f Apache Mahout 0.6 from http://mahout.apache.org/

 f Shakespeare.zip file from http://packtpub.com/support

Extract the contents of shakespeare.zip into a folder named shakespeare_text.
The shakespeare.zip archive should contain six works by Shakespeare. Put the
shakespeare_text folder and its contents, into HDFS.

$ mkdir shakespeare_text

$ cd shakespeare_text

$ unzip shakespeare.zip

$ cd ..

$ hadoop fs –put shakespeare_text /user/hadoop

How to do it...
Carry out the following steps to perform clustering in Mahout:

1. Convert the Shakespeare text documents into the Hadoop SequenceFile format:
mahout seqdirectory --input /user/hadoop/shakespeare_text --output
/user/hadoop/shakespeare-seqdir --charset utf-8

Advanced Big Data Analysis

204

2. Convert the text contents of the SequenceFiles into a vector:
mahout seq2sparse --input /user/hadoop/shakespeare-seqdir
--output /user/hadoop/shakespeare-sparse --namedVector -ml 80
-ng 2 -x 70 -md 1 -s 5 -wt tfidf -a org.apache.lucene.analysis.
WhitespaceAnalyzer

3. Run the k-means clustering algorithm on the document vectors. This command will
launch up to ten MapReduce jobs. Also, since we are using k-means clustering, we
need to specify the number of clusters we want:
mahout kmeans --input /user/hadoop/shakespeare-sparse/tfidf-
vectors --output /user/hadoop/shakespeare-kmeans/clusters
--clusters /user/hadoop/shakespeare-kmeans/initialclusters
--maxIter 10 --numClusters 6 --clustering –overwrite

4. To check the clusters identified by Mahout, use the following command:

mahout clusterdump --seqFileDir /user/hadoop/shakespeare-kmeans/
clusters/clusters-1-final --numWords 5 --dictionary /user/hadoop/
shakespeare-sparse/dictionary.file-0 --dictionaryType sequencefile

The results of the clusterdump tool can be overwhelming. Look for the Top Terms: section
of the output. For example, following are the top terms for the Romeo and Juliet cluster
identified by the k-means algorithm:

r=/romeoandjuliet.txt =]}

 Top Terms:

 ROMEO => 29.15485382080078

 JULIET => 25.78818130493164

 CAPULET => 21.401729583740234

 the => 20.942245483398438

 Nurse => 20.129182815551758

How it works...
The initial steps required us to do some pre-processing on the raw text data prior to running
the k-means algorithm with Mahout. The seqdirectory tool, simply converts the contents
of a HDFS folder into SequenceFiles. Next, the seq2sparse tool converts the newly
created SequenceFiles (which still contain text), into document vectors. The arguments to
seq2sparse are described in the following list:

 f --input: A folder in HDFS containing SequenceFiles formatted for Mahout.

 f --output: The output HDFS folder where the document vectors will be stored.

 f --namedVector: A flag to use the named vectors.

Chapter 7

205

 f -ml: A minimum log likelihood threshold. We set this to a high number because
we only want to keep the most significant terms.

 f -ng: The n-gram size.

 f -x: A threshold that defines the maximum document frequency a term can appear
before it is discarded. In this recipe we chose 70, meaning that any term that appears
in greater than 70 percent of the documents will be discarded. Use this setting to
discard meaningless words (For example, words such as at, a, and the).

 f -md: The minimum number of documents a term should occur in before it will be
considered for processing. In this recipe, we used 1, which means that a term only
needs to appear in one document to be processed.

 f -s: The minimum times a term needs to appear in a document before it will be
considered for processing.

 f -wt: The weighting algorithm that should be used. Here we chose to use TF-IDF.
The other option is TF, which would not help us identify key n-grams.

 f -a: The type of analyzer that should be used. An analyzer is used to transform a text
document. The WhitespaceAnalyzer splits a document on whitespace into tokens.
The tokens will be kept, combined, or discarded based on the other flags provided to
the seq2sparse application.

Finally, we ran the k-means clustering algorithm on the Shakespeare dataset. Mahout will
launch a series of MapReduce jobs, which are configurable. The k-means job will complete
when either the k-means clusters converge, or the maximum allowed number of MapReduce
jobs has been reached. The following are definitions of the parameters we used to configure
the k-means Mahout job:

 f --input: The folder in HDFS containing the document vectors.

 f --output: The output folder in HDFS of the k-means job.

 f --maxIter: The maximum number of MapReduce jobs to launch.

 f --numClusters: The number of clusters we want to identify. We chose 6, because
there were six Shakespeare documents, and we wanted to identify significant bi-
grams around those documents.

 f --clusters: The initial setup cluster points.

 f --clustering: A flag that tells Mahout to iterate over the data before clustering.

 f --overwrite: A flag that tells Mahout to overwrite the output folder.

See also
 f Sentiment classification with Apache Mahout

Advanced Big Data Analysis

206

Sentiment classification with Apache
Mahout

Sentiment classification is a classification process that tries to determine a person's
propensity to like or dislike certain items. In this recipe, we will use a naive Bayes classifier
from Apache Mahout to determine if a set of terms found in a movie review mean the movie
had a negative or positive reception.

Getting ready
You will need to download, compile, and install the following:

 f Maven 2.2 or above from http://maven.apache.org

 f Apache Mahout 0.6 from http://mahout.apache.org/

 f Polarity_dataset_v2.0 from http://www.cs.cornell.edu/people/
pabo/movie-review-data/

 f Scripts of this chapter from http://packtpub.com/support

Extract the movie review dataset review_polarity.tar.gz to the folder you are currently
working on. You should see a newly created folder named txt_sentoken. Within that folder
there should be two more folders named pos and neg. The pos and neg folders hold text
files containing the written reviews of movies. Obviously, the pos folder contains positive
movie reviews, and the neg folder contains negative reviews.

How to do it...
1. Run the reorg_data.py script from the folder you are currently working on to

transform the data into training and test sets for the Mahout classifier:
$./reorg_data.py txt_sentoken train test

2. Prepare the dataset for the Mahout classifier:

This application will read and write to the local filesystem, and not HDFS.

$ mahout prepare20newsgroups -p train -o train_formated -a org.
apache.mahout.vectorizer.DefaultAnalyzer -c UTF-8

$ mahout prepare20newsgroups -p test -o test_formated -a org.
apache.mahout.vectorizer.DefaultAnalyzer -c UTF-8

3. Place the train_formated and test_formated folders into HDFS:
$ hadoop fs –put train_formated /user/hadoop/

$ hadoop fs –put test_formated /user/hadoop/

Chapter 7

207

4. Train the naive Bayes classifier using the train_formated dataset:
$ mahout trainclassifier -i /user/hadoop/train_formated -o /user/
hadoop/reviews/naive-bayes-model -type bayes -ng 2 -source hdfs

5. Test the classifier using the test_formated dataset:
$ mahout testclassifier -m /user/hadoop/reviews/naive-bayes-model
-d prepared-test -type bayes -ng 2 -source hdfs -method sequential

6. The testclassifier tool should return a similar summary and confusion matrix.
The numbers will not be exactly the same as the ones shown in the following:

Summary

Correctly Classified Instances : 285 71.25%

Incorrectly Classified Instances : 115 28.75%

Total Classified Instances : 400

===

Confusion Matrix

a b <--Classified as

97 103 | 200 a = pos

12 188 | 200 b = neg

How it works...
The first two steps required us to prepare the data for the Mahout naive Bayes classifier.
The reorg_data.py script distributed the positive and negative reviews from the txt_
sentoken folder into a training and test set. 80 percent of the reviews were placed into
the training set, and the remaining 20 percent were used as a test set. Next, we used
the prepare20newsgroups tool to format the training and test datasets into a format
compatible with the Mahout classifier. The example dataset included in Mahout has a
similar format to the data produced by the reorg_data.py script, thus we can use the
prepare20newsgroups tool. All that the prepare20newsgroups does is to combine all
of the files in the pos and neg folders into a single file based on the dataset class (negative
or positive). So, instead of having 1000 positive and negative files, where each file contained
a single review, we now have two files named pos.txt and neg.txt, where each contains
all of the positive and negative reviews.

Next, we trained a naive Bayes classifier using the n-gram size of 2, specified with the –ng
flag, using the train_formated dataset in HDFS. Mahout trains the classifier by launching
a series of MapReduce jobs.

Advanced Big Data Analysis

208

Finally, we ran the testclassifier tool to test the classifier we created in step 4, against
the test_formated data in HDFS. As we can see from step 6, we correctly classified 71.25
percent of the test data. It is important to note that this statistic does not mean the classifier
will be accurate 71.25 percent of the time for every movie review ever. There are a number of
ways in which classifiers can be trained and validated. Those techniques go beyond the scope
of this book.

There's more...
The testclassifier tool we used in step 6, did not run a MapReduce job. It tested the
classifier in local mode. If we wanted to test the classifier using MapReduce, we just need to
change the -method parameter to mapreduce.

$ mahout testclassifier -m /user/hadoop/reviews/naive-bayes-model -d
prepared-test -type bayes -ng 2 -source hdfs -method mapreduce

8
Debugging

In this chapter, we will cover:

 f Using Counters in a MapReduce job to track bad records

 f Developing and testing MapReduce jobs with MRUnit

 f Developing and testing MapReduce jobs running in local mode

 f Enabling MapReduce jobs to skip bad records

 f Using Counters in a streaming job

 f Updating task status messages to display debugging information

 f Using illustrate to debug Pig jobs

Introduction
There is an adage among those working with Hadoop that everything breaks at scale.
Malformed or unexpected input is common. It's an unfortunate downside of working with large
amounts of unstructured data. Within the context of Hadoop, individual tasks are isolated and
given different sets of input. This allows Hadoop to easily distribute jobs, but leads to difficulty
in tracking global events and understanding the state of each individual task. Fortunately,
there are several tools and techniques available to aid in the process of debugging Hadoop
jobs. This chapter will focus on applying these tools and techniques to debug MapReduce jobs.

Debugging

210

Using Counters in a MapReduce job to
track bad records

The MapReduce framework provides Counters as an efficient mechanism for tracking the
occurrences of global events within the map and reduce phases of jobs. For example, a
typical MapReduce job will kick off several mapper instances, one for each block of the
input data, all running the same code. These instances are part of the same job, but run
independent of one another. Counters allow a developer to track aggregated events from all
of those separate instances.

A more concrete use of Counters can be found in the MapReduce framework itself. Each
MapReduce job defines several standard Counters. The output of these Counters can be
found in the job details of the Job Tracker web UI.

The UI shows the Counter group, name, mapper totals, reducer totals, and job totals.

Counters should be limited to tracking metadata about the job. The standard Counters are
good examples of this. The Map input records counter provides useful information about a
particular execution of a job. If Counters did not exist, these kinds of statistics would have to
be part of the job's main output, where they don't belong; or more likely as part of a secondary
output, complicating the logic of the job.

The following recipe is a simple map-only job that filters out bad records and uses a counter
to log the number of records that were filtered.

Getting ready
You will need to download the weblog_entries_bad_records.txt dataset from the
Packt website, http://www.packtpub.com/support.

Chapter 8

211

How to do it...
1. Copy the weblog_entries_bad_records.txt file from the local file system into

the new folder created in HDFS:
hadoop fs –copyFromLocal weblog_entries.txt /data/weblogs

2. Submit the CountersExample job:
hadoop jar ./CountersExample.jar com.packt.hadoop.solutions.
CounterExample /data/weblogs/weblog_entries_bad_records.txt /data/
weblogs/weblog_entries_clean.txt

3. To view the counter in the Job Tracker UI, open a web browser and navigate to the Job
Tracker UI. The default address is localhost:50030. Scroll down to the Completed
Jobs section. Then locate the CounterExample job. The most recent jobs are at the
bottom of the table. Once the job has been located, click on Jobid. This page has
high-level statistics about the job, including the Counters.

How it works...
Counters are defined in groups. In Java, each Counter group is an Enum. In the
CounterExample job, an Enum for tracking the count of each type of bad record was defined:

static enum BadRecords{INVALID_NUMBER_OF_COLUMNS, INVALID_IP_ADDRESS};

In the map function, there are two checks for valid data. The first check splits the data
delimited by tabs. For this example, if properly formed, each record should have five columns.
If a record does not have five columns, a call is made to the Context class to get the counter
for BadRecords.INVALID_NUMBER_OF_COLUMNS. The counter is then incremented by 1.

String record = value.toString();
String [] columns = record.split("\t");

// Check for valid number of columns
if (columns.length != 5) {
context.getCounter(BadRecords.INVALID_NUMBER_OF_COLUMNS).increment(1);
return;
}

Debugging

212

The second check is for validating IP addresses. A regular expression, VALID_IP_ADDRESS,
is defined. As its name implies, this regular expression will match valid IP addresses.

private static final String VALID_IP_ADDRESS = "^([01]?\\d\\d?|2[0-
4]\\d|25[0-5])\\.([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\." +
 "([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\.([01]?\\d\\d?|2[0-4]\\
d|25[0-5])$";

The VALID_IP_ADDRESS regular expression is used to check every record's IP address
column for a match. For each record that does not match, the INVALID_IP_ADDRESS
counter is incremented.

// Check for valid IP addresses
Matcher matcher = pattern.matcher(columns[4]);
If (!matcher.matches()) {
 context.getCounter(BadRecords.INVALID_IP_ADDRESS).increment(1);
 return;
}

Each increment of a counter is first stored locally by each mapper. The counter values are
then sent to the Task Tracker for a second level of aggregation. Finally, the values are sent
to the Job Tracker where the global aggregation takes place.

Developing and testing MapReduce jobs
with MRUnit

Conceptually, MapReduce jobs are relatively simple. In the map phase, each input record has
a function applied to it, resulting in one or more key-value pairs. The reduce phase receives
a group of the key-value pairs and performs some function over that group. Testing mappers
and reducers should be as easy as testing any other function. A given input will result in an
expected output. The complexities arise due to the distributed nature of Hadoop. Hadoop is
a large framework with many moving parts. Prior to the release of MRUnit by Cloudera, even
the simplest tests running in local mode would have to read from the disk and take several
seconds each to set up and run.

MRUnit removes as much of the Hadoop framework as possible while developing and testing.
The focus is narrowed to the map and reduce code, their inputs, and expected outputs. With
MRUnit, developing and testing MapReduce code can be done entirely in the IDE, and these
tests take fractions of a second to run.

This recipe will demonstrate how MRUnit uses the IdentityMapper provided by the MapReduce
framework in the lib folder. The IdentityMapper takes a key-value pair as input and emits the
same key-value pair, unchanged.

Chapter 8

213

Getting ready
Start with the following steps:

 f Download the latest version of MRUnit from http://mrunit.apache.org/
general/downloads.html

 f Create a new Java project

 f Add the mrunit-X.Y.Z-incubating-hadoop1.jar file and other Hadoop JAR
files to the build path of the Java project

 f Create a new class named IdentityMapperTest

 f For the full source, review the IdentityMapperTest.java file in the source code
folder of this chapter

How to do it...
Follow these steps to test a mapper with MRUnit:

1. Have the IdentityMapperTest class extend the TestCase class:
public class IdentityMapperTest extends TestCase

2. Create two private members of mapper and driver:
private Mapper identityMapper;
private MapDriver mapDriver;

3. Add a setup() method with a Before annotation:
@Before
public void setup() {
 identityMapper = new IdentityMapper();
mapDriver = new MapDriver(identityMapper);
}

4. Add a testIdentityMapper1() method with a Test annotation:
@Test
public void testIdentityMapper1() {
 mapDriver.withInput(new Text("key"), new Text("value"))
 mapDriver.withOutput(new Text("key"), new Text("value"))
 .runTest();
}

http://mrunit.apache.org/general/downloads.html

Debugging

214

5. Run the application.

6. Add a testIdentityMapper2() method that would fail:
@Test
public void testIdentityMapper2() {
 mapDriver.withInput(new Text("key"), new Text("value"))
 mapDriver.withOutput(new Text("key2"), new Text("value2"))
 mapDriver.runTest();
}

7. Run the application again.

How it works...
MRUnit is built on top of the popular JUnit testing framework. It uses the object-mocking
library, Mockito, to mock most of the essential Hadoop objects so the user only needs to
focus on the map and reduce logic. The MapDriver class runs the test. It is instantiated
with a Mapper class. The withInput() method is called to provide input to the Mapper
class that the MapDriver class was instantiated with. The withOutput() method is
called to provide output to validate the results of the call to the Mapper class. The call to
the runTest() method actually calls the mapper, passing it the inputs and validating its
outputs against the ones provided by the withOutput() method.

Chapter 8

215

There's more...
This example only showed the testing of a mapper. MRUnit also provides a ReduceDriver
class that can be used in the same way as MapDriver for testing reducers.

See also
 f For more information on Mockito, visit http://code.google.com/p/mockito/

 f The Developing and testing MapReduce jobs running in local mode recipe of
this chapter

Developing and testing MapReduce jobs
running in local mode

Developing in MRUnit and local mode are complementary. MRUnit provides an elegant way
to test the map and reduce phases of a MapReduce job. Initial development and testing of
jobs should be done using this framework. However, there are several key components of a
MapReduce job that are not exercised when running MRUnit tests. Two key class types are
InputFormats and OutFormats. Running jobs in local mode will test a larger portion of
a job. When testing in local mode, it is also much easier to use a significant amount of
real-world data.

This recipe will show an example of configuring Hadoop to use local mode and then debugging
that job using the Eclipse debugger.

Getting ready
You will need to download the weblog_entries_bad_records.txt dataset from
the Packt website, http://www.packtpub.com/support. This example will use the
CounterExample.java class provided with the Using Counters in a MapReduce job to
track bad records recipe.

How to do it...
1. Open the $HADOOP_HOME/conf/mapred-site.xml file in a text editor.

2. Set the mapred.job.tracker property value to local:
<property>
 <name>mapred.job.tracker</name>
 <value>local</value>
 </property>

Debugging

216

3. Open the $HADOOP_HOME/conf/core-site.xml file in a text editor.

4. Set the fs.default.name property value to file:///:
<property>
 <name>fs.default.name</name>
 <value>file:///</value>
</property>

5. Open the $HADOOP_HOME/conf/hadoop-env.sh file and add the following line:
export HADOOP_OPTS="-agentlib:jdwp=transport=dt_socket,server=y,
suspend=y,address=7272"

6. Run the CountersExample.jar file by passing the local path to the weblog_
entries_bad_records.txt file, and give a local path to an output file:
$HADOOP_HOME/bin/hadoop jar ./CountersExample.jar com.packt.
hadoop.solutions.CounterExample /local/path/to/weblog_entries_bad_
records.txt /local/path/to/weblog_entries_clean.txt

You'll get the following output:

Listening for transport dt_socket at address: 7272

7. Open the Counters project in Eclipse, and set up a new remote debug configuration.

8. Create a new breakpoint and debug.

Chapter 8

217

How it works...
A MapReduce job that is configured to execute in local mode runs entirely in one JVM instance.
Unlike the pseudo-distributed mode, this mode makes it possible to hook up a remote debugger
to debug a job. The mapred.job.tracker property set to local informs the Hadoop
framework that jobs will now run in the local mode. The LocalJobRunner class, which is used
when running in local mode, is responsible for implementing the MapReduce framework locally
in a single process. This has the benefit of keeping jobs that run in local mode as close as
possible to the jobs that run distributed on a cluster. One downside to using LocalJobRunner
is that it carries the baggage of setting up an instance of Hadoop. This means even the smallest
jobs will require at least several seconds to run. Setting the fs.default.name property value
to file:/// configures the job to look for input and output files on the local filesystem. Adding
export HADOOP_OPTS="-agentlib:jdwp=transport=dt_socket,server=y,suspe
nd=y,address=7272" to the hadoop-env.sh file configures the JVM to suspend processing
and listen for a remote debugger on port 7272 on start up.

There's more...
Apache Pig also provides a local mode for development and testing. It uses the same
LocalJobRunner class as a local mode MapReduce job. It can be accessed by starting
Pig with the following command:

pig –x local

See also
 f Developing and testing MapReduce jobs with MRUnit

Enabling MapReduce jobs to skip bad
records

When working with the amounts of data that Hadoop was designed to process, it is only a
matter of time before even the most robust job runs into unexpected or malformed data. If not
handled properly, bad data can easily cause a job to fail. By default, Hadoop will not skip bad
data. For some applications, it may be acceptable to skip a small percentage of the input data.
Hadoop provides a way to do just that. Even if skipping data is not acceptable for a given use
case, Hadoop's skipping mechanism can be used to pinpoint the bad data and log it for review.

Debugging

218

How to do it...
1. To enable the skipping of 100 bad records in a map job, add the following to the

run() method where the job configuration is set up:
SkipBadRecords.setMapperMaxSkipRecords(conf, 100);

2. To enable the skipping of 100 bad record groups in a reduce job, add the following
to the run() method where the job configuration is set up:

SkipBadRecords.setReducerMaxSkipGroups(conf, 100);

How it works...
The process to skip bad records will trigger if skipping has been enabled. Skipping is
enabled by calling the static methods on the SkipBadRecords class and once a task has
failed twice. Hadoop will then perform a binary search through the input data to identify the
bad records. Keep in mind that this is an expensive task that could require multiple attempts.
A job that enables skipping will probably want to increase the number of map and reduce
attempts. This can be done by using the JobConf.setMaxMapAttempts() and JobConf.
setMaxReduceAttempts() methods.

There's more...
By default, the process to skip bad records will be triggered after two failed attempts.
This default can be changed using the setAttemptsToStartSkipping() method on the
SkipBadRecords class. The output folder of the skipped records can be controlled using
the setSkipOutputPath() method on the SkipBadRecords class. By default, skipped
records will be logged to the _log/skip/ folder. These files are formatted as Hadoop
sequence files. To get them into human-readable format, use the following command:

hadoop fs –text _log/skip/<filename>

Record-skipping can also be controlled using MapReduce job properties. The following table
is a relevant snippet from the table provided at http://hadoop.apache.org/common/
docs/r0.20.2/mapred-default.html.

http://hadoop.apache.org/common/docs/r0.20.2/mapred-default.html
http://hadoop.apache.org/common/docs/r0.20.2/mapred-default.html

Chapter 8

219

Property Default
Value

Description

mapred.skip.
attempts.to.start.
skipping

2 The number of Task attempts after which skip
mode will be kicked off. When skip mode is kicked
off, the task reports the range of records that it
will process next to the TaskTracker. This is so that,
on failures, the TaskTracker knows which ones are
possibly the bad records. On further executions,
those are skipped.

mapred.skip.map.
auto.incr.proc.count

true On setting this flag to true, the MapRunner
increments the SkipBadRecords.COUNTER_
MAP_PROCESSED_RECORDS counter after
invoking the map function. This value must be set
to false for applications that process the records
asynchronously or buffer the input records. For
example, streaming. In such cases, applications
should increment this counter on their own.

mapred.skip.reduce.
auto.incr.proc.count

true On setting this flag to true, the framework
increments the SkipBadRecords.COUNTER_
REDUCE_PROCESSED_GROUPS counter after
invoking the reduce function. This value must be
set to false for applications that process the
records asynchronously or buffer the input records.
For example, streaming. In such cases, applications
should increment this counter on their own.

mapred.skip.out.dir If no value is specified here, the skipped records
are written to the output folder at _logs/skip.
User can stop writing skipped records by giving the
value none.

mapred.skip.map.max.
skip.records

0 This is the number of acceptable skip records
surrounding the bad record per bad record in the
mapper. The number includes the bad record as
well. To turn the feature of detection/skipping of
bad records off, set the value to 0. The framework
tries to narrow down the skipped range by retrying
until this threshold is met or all attempts get
exhausted for this task. Set the value to the
value of Long.MAX_VALUE to indicate that the
framework need not try to narrow down. Whatever
records (depends on the application) get skipped,
are acceptable.

Debugging

220

Property Default
Value

Description

mapred.skip.map.max.
skip.records

0 This is the number of acceptable skip groups
surrounding the bad group per bad group in the
reducer. The number includes the bad group as
well. To turn the feature of detection/skipping of
bad groups off, set the value to 0. The framework
tries to narrow down the skipped range by retrying
until this threshold is met or all attempts get
exhausted for this task. Set the value to the
value of Long.MAX_VALUE to indicate that the
framework need not try to narrow down. Whatever
groups (depends on the application) get skipped,
are acceptable.

Using Counters in a streaming job
Hadoop is not limited to running MapReduce jobs written in Java or other JVM languages.
It also provides a generic streaming interface. Using the streaming interface, any application
that can read and write to stdin and stdout can be used in a MapReduce job. Since
streaming jobs do not have access to the Hadoop Java classes, different approaches need
to be taken to get access to the framework's features. One convenient and extremely useful
feature provided by Hadoop is Counters. This recipe will use a simple Python program to
show how to increment a counter from a streaming application. The Python code does not
have direct access to the Java Reporter class used by the Hadoop framework for working
with Counters. Instead, it will write data to stderr in a format that has special meaning.
The Hadoop framework will interpret this as a request to increment the specified counter.

Getting ready
You will need to download the weblog_entries_bad_records.txt dataset from
the Packt website, http://www.packtpub.com/support. This example will use the
streaming_counters.py Python program provided in the code section of this chapter.

Chapter 8

221

How to do it...
Complete the following steps to execute a Hadoop streaming job using the streaming_
counters.py program:

1. Run the following command:
hadoop jar $HADOOP_HOME/contrib/hadoop-*streaming*.jar \

-file streaming_counters.py \

-mapper streaming_counters.py \

-reducer NONE \

-input /data/weblogs/weblog_entries_bad_records.txt \

-output /data/weblogs/weblog_entries_filtered.txt

2. To view the counter in the Job Tracker UI, open a web browser and navigate to the Job
Tracker UI. The default address is localhost:50030. Scroll down to the Completed
Jobs section. Then locate the streaming_counters job. The most recent jobs are at
the bottom of the table. Once the job has been located, click on Jobid.

How it works...
The Hadoop framework constantly monitors stderr for entries that fit the following format:

reporter:counter:group,counter,value

If it finds a string that matches this format, the Hadoop framework will check to see if that
group and counter exists. If they do exist, the current value will be incremented by that value.
If they do not exist, the group and counter will be created and set to that value.

The Python code performs two validation checks on the weblog data. The first checks for an
invalid number of columns:

if len(cols) < 5:
sys.stderr.write("reporter:counter:BadRecords,\
INVALID_NUMBER_OF_COLS,1")
 continue

Debugging

222

If a line has less than five columns, the program will write to stderr in the format that
Hadoop expects for manipulating the Counter. Similarly, the second validation verifies the IP
address of each record and increments a counter each time an invalid IP address is found.

m = re.match(('^([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\'
 '.([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\'
 '.([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\'
 '.([01]?\\d\\d?|2[0-4]\\d|25[0-5])$'), ip)
if not m:
sys.stderr.write("reporter:counter:BadRecords,INVALID_IP,1")
continue

There's more...
Streaming jobs also have access to setting the task's status message using the same basic
method. Writing to stderr in the following format will update a task's status, setting it to
message.

reporter:status:message

See also
 f Using Counters in a MapReduce job to track bad records

Updating task status messages to display
debugging information

Along with maintaining counters, another role of the Reporter class in Hadoop is to capture
task status information. The task status information is periodically sent to the Job Tracker. The
Job Tracker UI is updated to reflect the current status. By default, the task status will display
its state. The task state can be one of the following:

 f RUNNING

 f SUCCEEDED

 f FAILED

 f UNASSIGNED

 f KILLED

 f COMMIT_PENDING

 f FAILED_UNCLEAN

 f KILLED_UNCLEAN

Chapter 8

223

When debugging a MapReduce job, it can be useful to display a custom message that gives
more detailed information on how the task is running. This recipe shows how to update the
task status.

Getting ready
 f Download the source code for this chapter.
 f Load the StatusMessage project.

How to do it...
Updating a task's status message can be done using the setStatus() method of the job's
Context class.

context.setMessage("user custom message");

How it works...
The source code for this chapter provides an example of using a custom task status message
to display the number of rows being processed per second by the task.

public static class StatusMap extends Mapper<LongWritable, Text,
LongWritable, Text> {

 private int rowCount = 0;
 private long startTime = 0;

 public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException{

 //Display rows per second every 100,000 rows
 rowCount++;
 if(startTime == 0 || rowCount % 100000 == 0)
 {
 if(startTime > 0)
{
 long estimatedTime = System.nanoTime() - startTime;
 context.setStatus("Processing: " + (double)rowCount /
((double)estimatedTime/1000000000.0) + " rows/second");
 rowCount = 0;
}

 startTime = System.nanoTime();
}

 context.write(key, value);
}
}

Debugging

224

Two private class variables are declared: rowCount for keeping track of the number of rows
that are processed and startTime for keeping track of the time when processing started.
Once the map function has processed 100,000 lines, the task status is updated with the
number of rows per second that are being processed.

context.setStatus("Processing: " + (double)rowCount / ((double)
estimatedTime/1000000000.0) + " rows/second");

After the message has been updated, the rowCount and startTime variables are reset
and the process starts over again. The status is stored locally in the memory of the current
process. It is then sent to the Task Tracker. The next time the Task Tracker pings, the Job
Tracker is also sent the updated status message. Once the Job Tracker receives the status
message, this information is made available to the UI.

Using illustrate to debug Pig jobs
Generating good test data for a complex distributed job that joins, filters, and aggregates
gigabytes or even terabytes of data can be one of the hardest parts of the development
process, or at least one of the most tedious. Apache Pig provides an incredibly powerful tool,
illustrate, that will seek out cases from the provided full input data that exercise different
dataflow paths. The following recipe shows an example of the illustrate command in use.

Getting ready
Apache Pig 0.10 or a more recent version must be installed. You can download it from
http://pig.apache.org/releases.html.

How to do it...
The following Pig code will show an example of a record with a malformed IP address:

weblogs = load '/data/weblogs/weblog_entries_bad_records.txt'

 as (md5:chararray, url:chararray, date:chararray, time:chararray,
ip:chararray);

ip_addresses = foreach weblogs generate ip;

bad = filter ip_addresses by not

(ip matches '^([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\.([01]?\\d\\d?|2[0-4]\\
d|25[0-5])\\.([01]?\\d\\d?|2[0-4]\\d|25[0-5])\\.([01]?\\d\\d?|2[0-4]\\
d|25[0-5])$');

illustrate bad;

http://pig.apache.org/releases.html
http://pig.apache.org/releases.html

Chapter 8

225

The output will look like the following:

How it works...
In the preceding example, data is filtered on invalid IP addresses. The number of records that
have an invalid IP address make up a small percentage of the total. If a traditional sampling
approach was taken to create test data, chances are that the sampled data would not contain
any records with an invalid IP address.

The illustrate algorithm makes four complete passes over a Pig script to generate its
data. The first pass takes a sample of data from each input and sends it through the script.
The second pass finds and removes records that followed the same path through the script.
The third pass determines if any possible paths were not taken by the sampled data from the
first pass. If there are paths that are not represented by the sampled data, the illustrate
algorithm will create fake data that exercises the remaining paths. The fourth pass is similar
to the second pass; it removes any redundant data created by the third pass.

See also
 f To learn about generating example data for dataflow programs, visit

http://i.stanford.edu/~olston/publications/sigmod09.pdf

http://i.stanford.edu/~olston/publications/sigmod09.pdf
http://i.stanford.edu/~olston/publications/sigmod09.pdf

9
System Administration

In this chapter we will cover:

 f Starting Hadoop in pseudo-distributed mode

 f Starting Hadoop in distributed mode

 f Adding new nodes to an existing cluster

 f Safely decommissioning nodes

 f Recovering from a NameNode failure

 f Monitoring cluster health using Ganglia

 f Tuning MapReduce job parameters

Introduction
This chapter will discuss how to maintain, monitor, and tune a Hadoop cluster and MapReduce
jobs. We will review the various Hadoop modes of operations, describe how to resolve problems
within the Hadoop cluster, and finally review some important job tuning parameters.

Starting Hadoop in pseudo-distributed mode
Hadoop supports three different operating modes:

 f Standalone mode: In this mode, Hadoop will run as a single process on a single node.

 f Pseudo-distributed mode: In this mode, Hadoop will run all services in separate
processes on a single node.

 f Fully-distributed mode: In this mode, Hadoop will run all services in separate
processes across multiple nodes.

System Administration

228

This recipe will describe how to install and set up Hadoop to run in pseudo-distributed mode.
In pseudo-distributed mode, all of the HDFS and MapReduce processes will start on a single
node. Pseudo-distributed mode is an excellent environment to test your HDFS operations
and/or your MapReduce applications on a subset of the data.

Getting ready
Ensure that you have Java 1.6, ssh, and sshd installed. In addition, the ssh daemon (sshd)
should be running on the node. You can validate the installation of these applications by
using the following commands:

$ java -version

java version "1.6.0_31"

Java(TM) SE Runtime Environment (build 1.6.0_31-b04)

Java HotSpot(TM) 64-Bit Server VM (build 20.6-b01, mixed mode)

$ ssh

usage: ssh [-1246AaCfgkMNnqsTtVvXxY] [-b bind_address] [-c cipher_spec]

 [-D [bind_address:]port] [-e escape_char] [-F configfile]

 [-i identity_file] [-L [bind_address:]port:host:hostport]

 [-l login_name] [-m mac_spec] [-O ctl_cmd] [-o option] [-p
port]

 [-R [bind_address:]port:host:hostport] [-S ctl_path]

 [-w tunnel:tunnel] [user@]hostname [command]

$ service sshd status

openssh-daemon (pid 2004) is running...

How to do it...
Carry out the following steps to start Hadoop in pseudo-distributed mode:

1. Create a Hadoop user account. This is not specifically required to get Hadoop running
in pseudo-distributed mode, but it is a common and good security practice. Ensure
that the JAVA_HOME environment property is set to the folder of the system's Java
installation:
useradd hadoop

passwd hadoop

su – hadoop

$ echo $JAVA_HOME

$ /usr/java/jdk1.6.0_31

Chapter 9

229

2. Generate an ssh public and private key pair to allow password-less login to the node
using the Hadoop user account. When asked for a passphrase, hit the Enter key,
ensuring no passphrase will be used:
$ su – hadoop

$ ssh-keygen –t rsa

3. Add the public key to the authorized key list:

If you have more than one node, you will need to copy this key to every
node in the cluster.

$ ssh-copy-id –i /home/hadoop/.ssh/id_rsa.pub hadoop@localhost

4. Test the password-less ssh login. You should be able to ssh to localhost using
your hadoop account without providing a password:
$ ssh localhost

5. Download a Hadoop distribution from http://hadoop.apache.org using the
Hadoop user account. We used Hadoop 0.20.x for this installation:
su – hadoop

$ tar –zxvf hadoop-0.20.x.tar.gz

6. Change the following configuration files located in the conf folder of the extracted
Hadoop distribution. These configuration changes will allow Hadoop to run in
pseudo-distributed mode:
$ vi conf/core-site.xml

<configuration>

 <property>

 <name>fs.default.name</name>

 <value>hdfs://localhost:8020</value>

 </property>

</configuration>

$ vi conf/hdfs-site.xml

<configuration>

 <property>

 <name>dfs.replication</name>

 <value>1</value>

 </property>

</configuration>

$ vi conf/mapred-site.xml

System Administration

230

<configuration>

 <property>

 <name>mapred.job.tracker</name>

 <value>localhost:8021</value>

 </property>

</configuration>

7. Format the Hadoop NameNode:
$ bin/hadoop namenode –format

8. Start all of the Hadoop HDFS and MapReduce services:
$ bin/start-all.sh

9. Verify all of the services started successfully by looking at the NameNode
status page http://localhost:50070/, and the JobTracker page
http://localhost:50030/. You can stop all of the Hadoop services
by running the bin/stop-all.sh script.

How it works...
Steps 1 through 4 sets up a single node for a password-less login using ssh.

Next, we downloaded a distribution of Hadoop and configured the distribution to run in
pseudo-distributed mode. The fs.default.name property was set to a URI to tell Hadoop
where to find the HDFS implementation, which is running on our local machine and listening
on port 8020. Next, we set the replication factor of HDFS to 1 using the dfs.replication
property. Since we are running all of the Hadoop services on a single node, there is no need
to replicate any information. If we did, all of the replicated information would reside on the
single node. We set the value of the last configuration property mapred.job.tracker
to localhost:8021. The mapred.job.tracker property tells Hadoop where to find
the JobTracker.

Finally, we formatted the NameNode and started the Hadoop services. You need to format
the NameNode after you set up a new Hadoop cluster. Formatting a NameNode will erase
all of the data in the cluster.

There's more...
By default, the Hadoop distribution comes configured to run in standalone mode. In
standalone mode, there is no need to start any Hadoop service. In addition, input and
output folders will be located on the local filesystem, instead of HDFS. To run a MapReduce
job in standalone mode, use the configuration files that initially came with the distribution.
Create an input folder on the local filesystem and use the Hadoop shell script:

Chapter 9

231

$ mkdir input

$ cp somefiles*.txt input/

$ /path/to/hadoop/bin/hadoop jar myjar.jar input/*.txt output

See also
 f Starting Hadoop in distributed mode

Starting Hadoop in distributed mode
As mentioned in the previous recipe, Hadoop supports three different operating modes:

 f Standalone mode

 f Pseudo-distributed mode

 f Fully-distributed mode

This recipe will describe how to set up Hadoop to run in fully-distributed mode. In fully-
distributed mode, HDFS and the MapReduce services will run across multiple machines.
A typical architecture is to have a dedicated node run the NameNode and the JobTracker
services, another dedicated node to host the Secondary NameNode service, and the
remaining nodes in the cluster running both the DataNode and TaskTracker services.

Getting ready
This recipe will assume that steps 1 through 5 from the recipe Starting Hadoop in
pseudo-distributed mode of this chapter have been completed. There should be a user
named hadoop on every node in the cluster. In addition, the rsa public key generated in
step 2 of the previous recipe must be distributed and installed on every node in the cluster
using the ssh-copy-id command. Finally, the Hadoop distribution should be extracted
and deployed on every node in the cluster.

We will now discuss the specific configurations required to get the cluster running in
distributed mode. We will assume that your cluster will use the following configuration:

Server name Purpose Number of dedicated
machines

head Will run the NameNode and JobTracker
services

1

secondary Will run the Secondary NameNode service 1
worker(n) Will run the TaskTracker and DataNode

services
3 or greater

System Administration

232

How to do it...
Perform the following steps to start Hadoop in fully-distributed mode:

1. Update the following configuration files on all of the nodes in the cluster:
$ vi conf/core-site.xml

<configuration>

 <property>

 <name>fs.default.name</name>

 <value>hdfs://head:8020</value>

 </property>

</configuration>

$ vi conf/hdfs-site.xml

<configuration>

 <property>

 <name>dfs.replication</name>

 <value>3</value>

 </property>

</configuration>

$ vi conf/mapred-site.xml

<configuration>

 <property>

 <name>mapred.job.tracker</name>

 <value>head:8021</value>

 </property>

</configuration>

2. Update the masters and slaves configuration files on the head node. The
masters configuration file contains the hostname of the node which will run the
Secondary NameNode. The slaves configuration file contains a list of the hosts
which will run the TaskTracker and DataNode services:
$ vi conf/masters

secondary

$ vi conf/slaves

worker1

worker2

worker3

Chapter 9

233

3. Format the Hadoop NameNode from the head node:
$ bin/hadoop namenode –format

4. From the head node as the hadoop user, start all of the Hadoop services:
$ bin/start-all.sh

5. Confirm that all of the correct services are running on the proper nodes:

 � On the master: Both the NameNode and JobTracker services should running

 � On the secondary: The Secondary NameNode service should be running

 � On the worker nodes: The DataNode and TaskTracker services should
be running

How it works...
First we changed the Hadoop configuration files core-site.xml, hdfs-site.xml,
and mapred-site.xml on every node in the cluster. These configuration files need to be
updated to tell the Hadoop services running on every node where to find the NameNode and
JobTracker services. In addition, we changed the HDFS replication factor to 3. Since we have
three or more nodes available, we changed the replication from 1 to 3 in order to support
high data availability in case one of the worker nodes experiences a failure.

There's more...
It is not necessary to run the Secondary NameNode on a separate node. You can run the
Secondary NameNode on the same node as the NameNode and JobTracker, if you wish.
To do this, stop the cluster, modify the masters configuration file on the master node,
and restart all of the services:

$ bin/stop-all.sh

$ vi masters

head

$ bin/start-all.sh

Another set of configuration parameters that will come in handy when your cluster grows or
when you wish to perform maintenance, are the exclusion list parameters that can be added
to the mapred-site.xml configuration file. By adding the following lines to mapred-site.
xml, you can list the nodes that will be barred from connecting to the NameNode (dfs.
hosts.exclude) and/or the JobTracker (mapred.hosts.exclude). These configuration
parameters will be used later when we discuss decommissioning of a node in the cluster:

<property>
 <name>dfs.hosts.exclude</name>
 <value>/path/to/hadoop/dfs_excludes</value>

System Administration

234

 <final>true</final>
 </property>
 <property>
 <name>mapred.hosts.exclude</name>
 <value>/path/to/hadoop/mapred_excludes </value>
 <final>true</final>
 </property>

Create two empty files named dfs_excludes, and mapred_excludes for future use:

$ touch /path/to/hadoop/dfs_excludes

$ touch /path/to/hadoop/mapred_excludes

Start the cluster:

$ bin/start-all.sh

See also
 f Adding new nodes to an existing cluster

 f Safely decommissioning nodes

Adding new nodes to an existing cluster
Hadoop supports adding new nodes to an existing cluster without shutting down or
restarting any service. This recipe will outline the steps required to add a new node
to a pre-existing cluster.

Getting ready
Ensure that you have a Hadoop cluster up and running. In addition, ensure that you have
the Hadoop distribution extracted, and the configuration files have been updated with the
settings from the recipe titled Starting Hadoop in distributed mode.

We will use the following terms for our imaginary cluster:

Server name Purpose Number of dedicated
machines

head Will run the NameNode and JobTracker
services

1

secondary Will run the Secondary NameNode service 1
worker(n) Will run the TraskTracker and DataNode

services
3 or greater

Chapter 9

235

How to do it...
Follow these steps to add new nodes to an existing cluster:

1. From the head node, update the slaves configuration file with the hostname
of the new node:
$ vi conf/slaves

worker1

worker2

worker3

worker4

2. Log in to the new node and start the DataNode and TaskTracker services:

$ ssh hadoop@worker4

$ cd /path/to/hadoop

$ bin/hadoop-daemon.sh start datanode

$ bin/hadoop-daemon.sh start tasktracker

How it works...
We updated the slaves configuration file on the head node to tell the Hadoop framework
that a new node exists in the cluster. However, this file is only read when the Hadoop services
are started (for example, by executing the bin/start-all.sh script). In order to add the
new node to the cluster without having to restart all of the Hadoop services, we logged into
the new node, and started the DataNode and TaskTracker services manually.

The DataNode and TaskTracker services will automatically start the next
time the cluster is restarted.

There's more...
When you add a new node to the cluster, the cluster is not properly balanced. HDFS will not
automatically redistribute any existing data to the new node in order to balance the cluster.
To rebalance the existing data in the cluster, you can run the following command from the
head node:

bin/start-balancer.sh

System Administration

236

Rebalancing a Hadoop cluster is a network-intensive task. Imagine, we
might be moving terabytes of data around, depending on the number of
nodes added to the cluster. Job performance issues might arise when a
cluster is in the process of rebalancing, and therefore regular rebalancing
maintenance should be properly planned.

See also
 f Safely decommissioning nodes

Safely decommissioning nodes
The practice of removing nodes from a Hadoop cluster is very common. Hardware might
have failed, or machines might need to be upgraded. In this recipe, we will show you the
steps to safely remove a worker node from a Hadoop cluster.

Getting ready
It is assumed that your cluster is up and running and you have configured the following
properties in mapred-site.xml:

<property>
 <name>dfs.hosts.exclude</name>
 <value>/path/to/hadoop/dfs_excludes</value>
 <final>true</final>
 </property>
 <property>
 <name>mapred.hosts.exclude</name>
 <value>/path/to/hadoop/mapred_excludes </value>
 <final>true</final>
</property>

In addition, there should be two files located in the Hadoop home folder on the head node:
dfs_excludes and mapred_excludes.

How to do it...
Perform the following steps to decommission a node in the Hadoop cluster:

1. Add the hostname of the node you wish to decommission to the dfs_excludes
and mapred_excludes files on the head node:
$ vi /path/to/hadoop/dfs_excludes

Chapter 9

237

worker1

$ vi /path/to/hadoop/mapred_excludes

worker1

2. Notify the NameNode to re-read the exclude list and disconnect the worker node
which will be decommissioned:
$ hadoop dfsadmin –refreshNodes

3. Notify the JobTracker to re-read the exclude list and disconnect the worker node
which will be decommissioned:
$ hadoop mradmin –refreshNodes

4. Check the status of the decommissioning process:

$ hadoop dfsadmin -report

How it works...
First, we added the hostname of the node we wanted to decommission to the dfs_excludes
and mapred_excludes files we created in a previous recipe. Next, we issued the hadoop
dfsadmin –refreshNodes command to notify the NameNode to disconnect from all of
the hosts listed in the dfs_excludes file. Similarly, we issued the hadoop mradmin –
refreshNodes command to notify the JobTracker to stop using the TaskTrackers on the
nodes listed in the mapred_excludes file.

Recovering from a NameNode failure
The NameNode is the single most important Hadoop service. It maintains the locations
of all of the data blocks in the cluster; in addition, it maintains the state of the distributed
filesystem. When a NameNode fails, it is possible to recover from a previous checkpoint
generated by the Secondary NameNode. It is important to note that the Secondary NameNode
is not a backup for the NameNode. It performs a checkpoint process periodically. The data is
almost certainly stale when recovering from a Secondary NameNode checkpoint. However,
recovering from a NameNode failure using an old filesystem state is better than not being able
to recover at all.

Getting ready
It is assumed that the system hosting the NameNode service has failed, and the
Secondary NameNode is running on a separate machine. In addition, the fs.checkpoint.
dir property should have been set in the core-default.xml file. This property tells the
Secondary NameNode where to save the checkpoints on the local filesystem.

System Administration

238

How to do it...
Carry out the following steps to recover from a NameNode failure:

1. Stop the Secondary NameNode:
$ cd /path/to/hadoop

$ bin/hadoop-daemon.sh stop secondarynamenode

2. Bring up a new machine to act as the new NameNode. This machine should
have Hadoop installed, be configured like the previous NameNode, and ssh
password-less login should be configured. In addition, it should have the same
IP and hostname as the previous NameNode.

3. Copy the contents of fs.checkpoint.dir on the Secondary NameNode to
the dfs.name.dir folder on the new NameNode machine.

4. Start the new NameNode on the new machine:
$ bin/hadoop-daemon.sh start namenode

5. Start the Secondary NameNode on the Secondary NameNode machine:
$ bin/hadoop-daemon.sh start secondarynamenode

6. Verify that the NameNode started successfully by looking at the NameNode
status page http://head:50070/.

How it works...
We first logged into the Secondary NameNode and stopped the service. Next, we set up a
new machine in the exact manner we set up the failed NameNode. Next, we copied all of
the checkpoint and edit files from the Secondary NameNode to the new NameNode. This
will allow us to recover the filesystem status, metadata, and edits at the time of the last
checkpoint. Finally, we restarted the new NameNode and Secondary NameNode.

There's more...
Recovering using the old data is unacceptable for certain processing environments. Instead,
another option would be to set up some type of offsite storage where the NameNode can
write its image and edits files. This way, if there is a hardware failure of the NameNode, you
can recover the latest filesystem without resorting to restoring old data from the Secondary
NameNode snapshot.

The first step in this would be to designate a new machine to hold the NameNode image and
edit file backups. Next, mount the backup machine on the NameNode server. Finally, modify
the hdfs-site.xml file on the server running the NameNode to write to the local filesystem
and the backup machine mount:

Chapter 9

239

$ cd /path/to/hadoop

$ vi conf/hdfs-site.xml

<property>

 <name>dfs.name.dir</name>

 <value>/path/to/hadoop/cache/hadoop/dfs, /path/to/backup</value>

</property>

Now the NameNode will write all of the filesystem metadata to both /path/to/hadoop/
cache/hadoop/dfs and the mounted /path/to/backup folders.

Monitoring cluster health using Ganglia
Ganglia is a monitoring system designed for use with clusters and grids. Hadoop can be
configured to send periodic metrics to the Ganglia monitoring daemon, which is useful for
diagnosing and monitoring the health of the Hadoop cluster. This recipe will explain how
to configure Hadoop to send metrics to the Ganglia monitoring daemon.

Getting ready
Ensure that you have Ganglia Version 3.1 or better installed on all of the nodes in the Hadoop
cluster. The Ganglia monitoring daemon (gmond) should be running on every worker node
in the cluster. You will also need the Ganglia meta daemon (gmetad) running on at least
one node, and another node running the Ganglia web frontend.

The following is an example with modified gmond.conf file that can be used by the
gmond daemon:

cluster {
 name = "Hadoop Cluster"
 owner = "unspecified"
 latlong = "unspecified"
 url = "unspecified"
}

host {
 location = "my datacenter"
}

udp_send_channel {
 host = mynode.company.com
 port = 8649
 ttl = 1
}

System Administration

240

udp_recv_channel {
 port = 8649
}

tcp_accept_channel {
 port = 8649
}

Also, ensure that the Ganglia meta daemon configuration file includes your cluster as a data
source. For example, modify the gmeta.conf configuration file to add the Hadoop cluster as
a data source:

data_source "Hadoop Cluster" mynode1.company.com:8649 mynode2.company.
com:8649 mynode3.company.com:8649

How to do it...
Perform the following steps to use Ganglia to monitor cluster metrics:

1. Edit the hadoop-metrics.properties file found in the Hadoop configuration
folder. If the hadoop-metrics.properties file does not exist, create it:

This property file will need to be updated for every node in the cluster.

$ vi /path/to/hadoop/hadoop-metrics.properties

dfs.class=org.apache.hadoop.metrics.ganglia.GangliaContext31

dfs.period=10

dfs.servers=mynode1.company.com:8649

mapred.class=org.apache.hadoop.metrics.ganglia.GangliaContext31

mapred.period=10

mapred.servers=mynode1.company.com 8649

jvm.class=org.apache.hadoop.metrics.ganglia.GangliaContext31

jvm.period=10

jvm.servers=mynode1.company.com:8649

rpc.class=org.apache.hadoop.metrics.ganglia.GangliaContext31

rpc.period=10

rpc.servers=mynode1.company.com 8649

Chapter 9

241

2. Restart the Ganglia meta daemon service.

3. Restart the Hadoop cluster:
$ cd /path/to/hadoop

$ bin/stop-all.sh

$ bin/start-all.sh

4. Verify that Ganglia is collecting Hadoop metrics via the Ganglia web frontend.

How it works...
The Ganglia monitoring daemon (gmond) is responsible for collecting metric information
from the nodes where it is installed. Next, all of the metrics collected by the gmond daemons
are aggregated to the Ganglia meta daemon (gmetad). Finally, the Ganglia web frontend
will request the aggregated metrics in the form of XML from the gmetad daemon and
report that to users via the web interface.

Tuning MapReduce job parameters
The Hadoop framework is very flexible and can be tuned using a number of configuration
parameters. In this recipe, we will discuss the function and purpose of different configuration
parameters you can set for a MapReduce job.

Getting ready
Ensure that you have a MapReduce job which has a job class that extends the Hadoop
Configuration class and implements the Hadoop Tool interface, such as any
MapReduce application we have written so far in this book.

How to do it...
Follow these steps to customize MapReduce job parameters:

1. Ensure you have a MapReduce job class which extends the Hadoop
Configuration class and the Tool interface.

2. Use the ToolRunner.run() static method to run your MapReduce job, as shown
in the following example:
public static void main(String[] args) throws Exception {
 int exitCode = ToolRunner.run(new MyMapReduceJob(), args);
 System.exit(exitCode);
}

System Administration

242

3. Examine the following table of Hadoop job properties and values:

Property name Possible values Description
mapred.reduce.tasks Integers (0 - N) Sets the number of

reducers to launch.
mapred.child.java.opts JVM key-value pairs These parameters are

given as arguments
to every task JVM. For
example, to set the
maximum heap size for
all tasks to 1 GB, you
would set this property
to '-Xmx1GB'.

mapred.map.child.java.opts JVM key-value pairs These parameters are
given as arguments to
every map task JVM.

mapred.reduce.child.java.
opts

JVM key-value pairs These parameters are
given as arguments to
every reduce task JVM.

mapred.map.tasks.
speculative.execution

Boolean (true/false) Tells the Hadoop
framework to
speculatively launch
the exact same map
task on different nodes
in the cluster if a task
is not performing well
as compared to other
tasks in the job. This
property was discussed
in Chapter 1, Hadoop
Distributed File System
– Importing and
Exporting Data.

mapred.reduce.tasks.
speculative.execution

Boolean (true/false) Tells the Hadoop
framework to
speculatively launch
the exact same reduce
task on different nodes
in the cluster if a task
is not performing well
as compared to other
tasks in the job.

Chapter 9

243

Property name Possible values Description
mapred.job.reuse.jvm.num.
tasks

Integer (-1, 1 – N) The number of task
JVMs to be re-used. A
value of 1 indicates
one JVM will be started
per task, a value of -1
indicates a single JVM
can run an unlimited
number of tasks.
Setting this parameter
might help increase the
performance of small
jobs because JVMs will
be re-used for multiple
tasks (as opposed to
starting a JVM for each
and every task).

mapred.compress.map.output

mapred.output.compression.
type

mapred.map.output.
compression.codec

Boolean (true/false)

String (NONE, RECORD,
or BLOCK)

String (Name of
compression codec
class)

These three parameters
are used to compress
the output of map
tasks.

mapred.output.compress

mapred.output.compression.
type

mapred.output.compression.
codec

Boolean (true/false)

String (NONE, RECORD,
or BLOCK)

String (Name of
compression codec
class)

These three parameters
are used to compress
the output of a
MapReduce job.

4. Execute a MapReduce job with a custom Hadoop property. For example, we will
launch a job using five reducers:

$ cd /path/to/hadoop

$ bin/hadoop –jar MyJar.jar com.packt.MyJobClass –Dmapred.reduce.
tasks=5

System Administration

244

How it works...
When a job class extends the Hadoop Configuration class and implements the Hadoop
Tool interface, the ToolRunner class will automatically handle the following generic
Hadoop arguments:

Argument/Flag Purpose
-conf Takes a path to a parameter configuration file.
-D Used to specify Hadoop key/value properties

which will be added to the job configuration
-fs Used to specify the host port of the NameNode
-jt Used to specify the host port of the JobTracker

In the case of this recipe, the ToolRunner class will automatically place all of the
parameters specified with the -D flag into the job configuration XML file.

10
Persistence Using
Apache Accumulo

In this chapter, we will cover:

 f Designing a row key to store geographic events in Accumulo

 f Using MapReduce to bulk import geographic event data into Accumulo

 f Setting a custom field constraint for inputting geographic event data in Accumulo

 f Limiting query results using the regex filtering iterator

 f Counting fatalities for different versions of the same key using SumCombiner

 f Enforcing cell-level security on scans using Accumulo

 f Aggregating sources in Accumulo using MapReduce

Introduction
Storage of big data is a topic of ever-increasing popularity. Software projects facing concerns
over data scalability frequently find themselves having to shell out top dollar for expensive
RDBMS commercial licenses, or worse, having to rely on solutions in which scalability was an
afterthought. In the last couple of years, we have seen the introduction of many viable open
source database solutions to help manage massive amounts of structured and unstructured
data. Apache Accumulo was inspired by the Google BigTable design approach, and offers
scalable, distributed columnar persistence of data backed over Apache Hadoop. The Google
BigTable design is explained in detail at http://research.google.com/archive/
bigtable.html. This chapter will show several recipes that tackle common database
query/load tasks, and also shows how many of Accumulo's unique features help to
streamline the implementation.

http://research.google.com/archive/bigtable.html
http://research.google.com/archive/bigtable.html

Persistence Using Apache Accumulo

246

Designing a row key to store geographic
events in Accumulo

The Armed Conflict Location Event Data (ACLED) dataset is a collection of individual
events that occurred across a wide range of geographic areas. This recipe will show how we
can leverage Accumulo's sorted key ordering to group ACLED event records into geographic
ranges. Furthermore, each geographic range will be subgrouped in the descending order of
event occurrence. Specifically, the code in this recipe shows the generation logic that we can
turn around and use to build ACLED keys from our records. To verify that the key generator
works as expected, we will build and run unit tests with some sample row data.

Getting ready
To run the unit tests, you will need TestNG (testng-jdk15.jar) on the environment
classpath. Some basic familiarity with the TestNG testing API will help make sense of the
unit tests.

This recipe makes use of a specific type of quadtree data structure that is useful for grouping
geospatial data into indexed ranges. It will help to have some familiarity with a Z-order curve
(a.k.a. Morton curve) to build this type of quadtree for use over 2D geospatial data.

How to do it...
Follow these steps to implement a geospatial, reverse chronological row key generator:

1. Open the Java IDE editor of your choice.

2. Create the package example.accumulo and create the interface
RowIDGenerator.java with the following content:
package examples.accumulo;

import javax.security.auth.login.Configuration;
import java.io.IOException;

public interface RowIDGenerator {
public String getRowID(String[] parameters)
 throws IllegalArgumentException;
}

3. Under the same package example.accumulo, create a class named
ACLEDRowIDGenerator.java with the following content:
package examples.accumulo;

import java.text.DateFormat;
import java.text.ParseException;

Chapter 10

247

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.regex.Pattern;

public class ACLEDRowIDGenerator implements RowIDGenerator {

 private DateFormat dateFormat = new
 SimpleDateFormat("yyyy-MM-dd");
 private static final Pattern decimalPattern =
 Pattern.compile("[.]");

4. We write the method getRowID() to take a list of String[] parameters.
 @Override
 public String getRowID(String[] parameters)
 throws IllegalArgumentException {
 if(parameters.length != 3)
 throw new IllegalArgumentException("Required:
 {lat, lon, dtg}")
 StringBuilder builder = new StringBuilder();
 builder.append(getZOrderedCurve(parameters[0],
 parameters[1]));
 builder.append("_");
 builder.append(getReverseTime(parameters[2]));
 return builder.toString();
 }

5. We add the public method getZOrderedCurve() to build the geospatial portion
of our rowID. The public accessibility will help with unit testing:
 public String getZOrderedCurve(String lat, String lon)
 throws IllegalArgumentException {
 StringBuilder builder = new StringBuilder();
 lat = cleanAndValidatePoint(lat);
 lon = cleanAndValidatePoint(lon);
 int ceiling = Math.max(lat.length(), lon.length());
 for (int i = 0; i < ceiling; i++) {
 if(lat.length() <= i) {
 builder.append("0");
 } else {
 builder.append(lat.charAt(i));
 }
 if(lon.length() <= i) {
 builder.append("0");
 } else {
 builder.append(lon.charAt(i));
 }
 }
 return builder.toString();
 }

Persistence Using Apache Accumulo

248

6. The private method cleanAndValidatePoint() will help validate and sanitize
lat/lon points into an appropriate form for Z-order shuffling:
 private String cleanAndValidatePoint(String point)
 throws IllegalArgumentException {

 String[] pointPieces = decimalPattern.split(point);
 if(pointPieces.length > 2) {
 throw new IllegalArgumentException("Malformed
 point: " + point);
 }
 String integralStr = null;
 int integral = 0;
 try {
 //offset any negative integral portion
 integral = Integer.parseInt(pointPieces[0]) + 90;
 if(integral > 180 | integral < 0) {
 throw new IllegalArgumentException("Invalid
integral: " + integral + " for point: " + point);
 }
 integralStr = "" + integral;
 if(pointPieces.length > 1)
 integralStr +=
 Integer.parseInt(pointPieces[1]);
 if(integral < 10)
 integralStr = "00" + integralStr;
 else if (integral >= 10 && integral < 100)
 integralStr = "0" + integralStr;
 return integralStr;
 } catch (NumberFormatException e) {
 throw new IllegalArgumentException("Point: " +
 point + " contains non-numeric characters");
 }
 }

7. The public method getReverseTime() helps build the timestamp portion of the
row key. The public accessibility will help with unit testing:
 public long getReverseTime(String dateTime)
 throws IllegalArgumentException {
 Date date = null;
 try {
 date = dateFormat.parse(dateTime);
 } catch (ParseException e) {
 throw new IllegalArgumentException(dateTime +
 "Could not be parsed to a " +

Chapter 10

249

 "valid date with the supplied DateFormat " +
dateFormat.toString());
 }
 return Long.MAX_VALUE - date.getTime();
 }
}

8. In the package examples.accumulo, create a TestNG unit test class named
ValidatingKeyGenTest.java with the following content:
package examples.accumulo;

import org.apache.hadoop.hbase.thrift.generated.IllegalArgument;
import org.testng.annotations.BeforeClass;
import org.testng.annotations.Test;
import static org.testng.Assert.*;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;

public class ValidatingKeyGenTest {

 private ACLEDRowIDGenerator keyGen;
 private SimpleDateFormat dateFormatter = new
 SimpleDateFormat("yyyy-MM-dd");

9. Use the @BeforeClass annotation to create an instance of
ACLEDRowIDGenerator.
 @BeforeClass
 public void setup() {
 keyGen = new ACLEDRowIDGenerator();
 }

10. Add the validZOrder() unit test method.
 @Test
 public void validZOrder() {
 try {
 // +90 = 123.22,134.55
 String zpoint = keyGen.getZOrderedCurve("33.22",
 "44.55");
 assertEquals(zpoint, "1123342525");

 // +90 = 123, 134.55
 zpoint = keyGen.getZOrderedCurve("33", "44.55");

Persistence Using Apache Accumulo

250

 assertEquals(zpoint, "1123340505");

 // +90 = 123.55, 134
 zpoint = keyGen.getZOrderedCurve("33.55", "44");
 assertEquals(zpoint, "1123345050");

 // +90 = 123.1234, 134.56
 zpoint =
 keyGen.getZOrderedCurve("33.1234","44.56");
 assertEquals(zpoint, "11233415263040");

 // +90 = 00.11, 134.56
 zpoint = keyGen.getZOrderedCurve("-90.11",
 "44.56");
 assertEquals(zpoint, "0103041516");

 // +90 = 005.11, 134.56
 zpoint = keyGen.getZOrderedCurve("-85.11",
 "44.56");
 assertEquals(zpoint, "0103541516");

 // +90 = 011.11, 134.56
 zpoint = keyGen.getZOrderedCurve("-79.11",
 "44.56");
 assertEquals(zpoint, "0113141516");

 // +90 = 095, 134.56
 zpoint = keyGen.getZOrderedCurve("5", "44.56");
 assertEquals(zpoint, "0193540506");

 } catch (Exception e) {
 fail("EXCEPTION fail: " + e.getMessage());
 }

 }

11. Add the invalidZOrder() unit test method.
 @Test
 public void invalidZOrder() {
 String zpoint = null;
 try {
 zpoint = keyGen.getZOrderedCurve("98.22",
 "33.44");

Chapter 10

251

 fail("Should not parse. Too big an integral
 value.");
 } catch (IllegalArgumentException e) {
 assertTrue(e.getMessage().contains("invalid
integral"));
 }

 try {
 zpoint = keyGen.getZOrderedCurve("78.22",
 "-91.44");
 fail("Should not parse. Too big an integral
 value.");
 } catch (IllegalArgumentException e) {
 assertTrue(e.getMessage().contains("invalid
integral"));
 }

 try {
 zpoint =
 keyGen.getZOrderedCurve("332.22.33","33.44.33.22");
 fail("Should not parse. Too many split values.");
 } catch (IllegalArgumentException e) {
 assertTrue(e.getMessage().contains("Malformed
 point"));
 }

 try {
 zpoint = keyGen.getZOrderedCurve("33.22a",
 "33.33");
 fail("Should not parse. Contains bad characters.");
 } catch (IllegalArgumentException e) {
 assertTrue(e.getMessage().contains("contains non-
numeric characters"));
 }

 try {
 zpoint = keyGen.getZOrderedCurve("33.22",
 "3c.33");
 fail("Should not parse. Contains bad characters.");
 } catch (IllegalArgumentException e) {
 assertTrue(e.getMessage().contains("contains non-
numeric characters"));
 }
 }

Persistence Using Apache Accumulo

252

12. Add the testValidReverseTime() unit test method.
 @Test
 public void testValidReverseTime() {
 String dateStr = "2012-05-23";
 long reverse = keyGen.getReverseTime(dateStr);
 try {
 Date date = dateFormatter.parse(dateStr);
 assertEquals(reverse, (Long.MAX_VALUE –
 date.getTime()));
 } catch (ParseException e) {
 fail(e.getMessage());
 }
 }

13. Add the testInvalidReverseTime() unit test method.
 @Test
 public void testInvalidReverseTime() {
 try {
 long reverse = keyGen.getReverseTime("201a-22-
 22");
 fail("Should not reverse invalid date for
 DateFormat");
 } catch (IllegalArgumentException e) {
 assertTrue(e.getMessage().contains("could not be
parsed to a valid date with the supplied DateFormat"));
 }
 }

14. Add the testFullKey() unit test method.
 @Test
 public void testFullKey() {
 try {
 String dateStr = "2012-03-13";
 Date date = dateFormatter.parse(dateStr);
 long reverse = Long.MAX_VALUE - date.getTime();

 // +90 = 123.55, 156.77
 String key = keyGen.getRowID(new String[]{"33.55",
"66.77", dateStr});
 assertEquals(key, "1125365757_" + reverse);
 } catch (ParseException e) {
 fail(e.getMessage());
 } catch (IllegalArgumentException e) {
 fail(e.getMessage());
 }
 }

}

15. Run the unit tests in your environment. Every test should pass.

Chapter 10

253

How it works...
This code will serve as the basis for generating geospatial/reverse chronological row keys.
It exists as an independent component outside of any code that loads data to Accumulo. It
is designed specifically to build row keys that will sort in a very particular order once persisted
to an Accumulo table.

First, we define a general interface RowIDGenerator.java that could be re-used to build
different key generator implementations. All implementing classes must fulfill a simple
contract for getRowID(). It takes an array of arbitrary strings and returns a single string
representing the rowID. Should any errors occur, throw an IllegalArgumentException
exception. The class ACLEDRowIDGenerator.java requires an array of at least three
strings for input. We then start to build the Z-order structure necessary for the rowID strategy.

The getZOrderedCurve() method takes lat and lon strings as arguments. Building an
effect quadtree using the lat/lon point requires the points to adhere to strict formatting
guidelines, thus before we shuffle the points, we must validate and format the points using
the function cleanAndValidatePoint().

The function cleanAndValidatePoint() first separates the integral portion to the
left-hand side of the decimal from the fractional portion to the right-hand side of the decimal.
A point is not required to contain a decimal portion, but it must at least contain an integral
portion. Additionally, there should not be multiple fraction portions. Therefore, we throw an
IllegalArgumentException exception if splitting the point on decimal does not return a
one- or two-element array. Moving on, we offset each point by +90 to avoid negative numbers,
which would otherwise corrupt the Z-order interpretation. If after applying the offset we
contain a point with integral greater than 180 or less than 0, we can conclude that the point
either started at a number greater than 90 or a number less than -90. Both these conditions
flag an invalid point, and we throw an IllegalArgumentException exception indicating
such. If after these checks our point is still considered valid, it is time to start formatting it for
proper Z-order interpretation. Depending on the length of the point, we want to zero-pad the
beginning such that the integral portion is always of length 3. This will make more sense when
we examine how getZOrderCurve() uses the result. If applicable, add the fractional portion
back to the reformatted string representation without the decimal place. If at any time we get a
NumberFormatException exception, throw an IllegalArgumentException exception.

Once both latitude and longitude points have been properly formatted, we are ready to start
shuffling the numbers to build the quadtree. As our loop control variable, we'll take the
greater of the two lengths when comparing latitude and longitude, and use that as our loop's
max variable. As we cycle through i going from 0 to max, we start with lat and print the ith
character, followed by the ith character of lon. Should we reach the length of lat before lon,
or vice versa, print 0 for an interleaved spot in the iteration. This helps generate a consistent
key for a given lat/lon pair no matter the discrepancy in precision between the latitude and
longitude (that is, lat/lon: 1.23/4.56789 can be interpreted as 1.23000/4.56780).

Persistence Using Apache Accumulo

254

The general idea is to interleave the points such that the most significant digits are arranged
in the left-to-right order. Accumulo will maintain the sorted order of our geospatial keys
using lexicographical byte-order sorting. This means that the points pertaining to similar
geographic regions will be arranged contiguously for effective range scans. We can quickly
look up the given points for a particular lat/lon bounding region by building the offset
Z-order representation of both the lower and bound bounding parameters and setting the
start and end key ranges to the lower and upper bounding parameters respectively. For
example, searching for all of the points between lat/lon: 30.1/60.2 and 40.8/70.9 would
produce 120.1/150.2 and 130.8/160.9 (offset +90). The Z-order representation would thus
have the lower-bound (start-key) value of 11250012 and an upper-bound (end-key) value of
11360089. This is why it is critical to zero-pad the integral portion of the lat/lon points.
Without doing so, the application would incorrectly place 1.23 near 10.3 in the table, since
the Z-order shuffle for both points would yield a row key that started with 1.

The geospatial portion is only half of our rowID. When storing ACLED event data, we would
like to arrange events that lie in similar lat/lon regions in reverse chronological order. The
function getReverseTime() achieves this by appending a reverse timestamp for the given
item to the already calculated Z-order curve, separated by an underscore token. This allows
us to use the same table in Accumulo to further restrict queries by temporal ranges (that is,
100 most recent, last 3 months', and so on). Events with the exact same lat/lon values will
sort the records in the Accumulo table in the ascending order, but more recent events when
converted to milliseconds from epoch will have larger long values. To counter this, we subtract
the long value from the maximum possible long value. If incoming date strings do not match
the simple date format yyyy-MM-dd, throw an exception.

The resulting keys take the form of zOrderPoint_reverseTimestamp.

The unit tests are designed to test the error handling of getZOrderCurve() and
getReverseTime() as well as validate the expected output. We run this suite of tests to
perform a stress test on our rowID generator before using it to load new ACLED event records
into our Accumulo table.

There's more...
The rowID generation strategy listed in this recipe is designed to accommodate lat/lon
geospatially bound queries with an optional time restriction for events. While this sounds
very open-ended, there really is no one-size-fits-all solution for rowIDs when it comes to
BigTable-designed columnar datastores. Depending on the types of queries you wish to
perform over Accumulo, your rowID strategy might differ entirely. The following are a few
sections that further expand on the design choices made in this recipe.

Chapter 10

255

Lexicographic sorting of keys
Accumulo arranges key-value pairs stored in a table in the lexicographical sorted order
of the key contents. This means that keys are arranged in terms of their respective
byte contents, which does not always conform to an expected natural ordering pattern.
For example, consider that we wanted to persist the sequence {1,2,10} as rowIDs. The
lexicographic order would sort 10 after 1, but before 2, which is not what we expected for
our sequence. This recipe circumvents this limitation by using zero-padding points to create
a fixed-length string representation where the byte sorted order matches the expected
natural ordering. Zero-padding the mentioned sequence produces 01, 02, and 10; which,
when sorted lexicographically, maintains the sequence 01, 02, and 10.

This technique plays a key role in the previous recipe. Without using fixed-length points,
the Z-order shuffle of the points 1.23, 9.88 and 10.23, 9.88 would order them closer in an
overall sorted order of the dataspace than they technically belong. The Z-order representation
would produce 192838 and 19082830 respectively, which gives an inaccurate appearance
of the two points being close together. In this recipe, the offset of +90 means that no point
can exceed 180, implying a maximum integral length of three digits. By zero-padding every
integral out to three characters (001.23 instead of 1.23, 010.23 instead of 10.23, and so on),
the left-to-right digit ordering of the rowID more accurately reflects the point separation.

Z-order curve
Z-order curve is a technique to generate quadtrees that represent a flattened, 2-dimensional
view of geospatial data. A more in-depth explanation can be found in Wikipedia at
http://en.wikipedia.org/wiki/Z-order_curve

Specifically, this recipe uses the technique to produce rowIDs that are flexible for range
queries involving lat/lon points where the precision of the upper/lower bounding
parameters can vary. The left-to-right placement of significant digits in the rowID means
that a shorter Z-order queryID will match on more rows that begin with the supplied
queryID pattern than would a longer queryID pattern. Take, for example, the lat/lon
bounded query 30.1/40.2 and 50.7/60.8; when interleaved, this produces a start-key
of 340012 and an end-key of 560078. However, the same table could be used for a more
precise bounded range query such as 30.123/40.234 and 50.789/60.891, which yields
start keys 3400122334 and 5600788991. The former, less verbose start- or end-key
range will return more rows than the latter, which is what you would expect.

See also
 f Using MapReduce to bulk import geographic event data into Accumulo

http://en.wikipedia.org/wiki/Z-order_curve
http://en.wikipedia.org/wiki/Z-order_curve

Persistence Using Apache Accumulo

256

Using MapReduce to bulk import geographic
event data into Accumulo

This recipe will use MapReduce to load tab-separated ACLED event data directly into an
Accumulo table.

Getting ready
This recipe will be the easiest to test over a pseudo-distributed Hadoop cluster with Accumulo
1.4.1 and Zookeeper 3.3.3 installed. The shell script in this recipe assumes that Zookeeper is
running on the host localhost on port 2181; you can change this to suit your environment
needs. The Accumulo installation's bin folder needs to be on your environment path.

For this recipe, you'll need to create an Accumulo instance named test with the user as
root and password as password (top-notch security, I know…).

You will need the dataset ACLED_nigeria_cleaned.tsv loaded into HDFS at the path /
input/acled_cleaned/.

It is also highly recommended that you complete the Designing a row key to store
geographic events in Accumulo recipe earlier in this chapter. This recipe will use the classes
AccumuloTableAssistant.java and ACLEDRowIDGenerator.java, and its parent
interface RowIDGenerator.java to help with the setup.

How to do it...
Follow these steps to bulk load events into Accumulo using MapReduce:

1. Open the Java IDE editor of your choice.

2. Create a build template that produces a JAR file named accumulo-examples.jar.

3. Create the package example.accumulo and add RowIDGenerator.java,
AccumuloTableAssistant.java, and ACLEDRowIDGenerator.java.

4. You will need to configure the Accumulo core and Hadoop classpath dependencies.

5. Create the class ACLEDIngest.java with the following content:
package examples.accumulo;

import org.apache.accumulo.core.client.mapreduce.
AccumuloFileOutputFormat;
import org.apache.accumulo.core.client.mapreduce.lib.partition.
RangePartitioner;
import org.apache.accumulo.core.data.Key;
import org.apache.accumulo.core.data.Value;

Chapter 10

257

import org.apache.accumulo.core.util.CachedConfiguration;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.io.IOException;
import java.util.regex.Pattern;

public class ACLEDIngest extends Configured implements Tool {

 private Configuration conf;

 public ACLEDIngest(Configuration conf) {
 this.conf = conf;
 }

6. The run() method is where we create and submit the job.
 @Override
 public int run(String[] args) throws Exception {

 if(args.length < 8) {
 System.err.println(printUsage());
 System.exit(0);
 }

 Job job = new Job(conf, "ACLED ingest
 to Accumulo");
 job.setInputFormatClass(TextInputFormat.class);
 job.setMapperClass(ACLEDIngestMapper.class);
 job.setMapOutputKeyClass(Text.class);
 job.setMapOutputValueClass(Text.class);
 job.setReducerClass(ACLEDIngestReducer.class);

Persistence Using Apache Accumulo

258

 job.setPartitionerClass(RangePartitioner.class);
 job.setJarByClass(getClass());

 String input = args[0];
 String outputStr = args[1];
 String instanceName = args[2];
 String tableName = args[3];
 String user = args[4];
 String pass = args[5];
 String zooQuorum = args[6];
 String localSplitFile = args[7];

 FileInputFormat.addInputPath(job, new Path(input));
 AccumuloFileOutputFormat.setOutputPath(job,
 clearOutputDir(outputStr));
 job.setOutputFormatClass(
 AccumuloFileOutputFormat.class);

7. Create the AccumuloTableAssistant instance to help create and presplit the
acled table.
 AccumuloTableAssistant tableAssistant = new
 AccumuloTableAssistant.Builder()
 .setInstanceName(instanceName)
 .setTableName(tableName).setUser(user)
 .setPassword(pass)
 .setZooQuorum(zooQuorum)
 .build();

 String splitFileInHDFS = "/tmp/splits.txt";
 int numSplits = 0;
 tableAssistant.createTableIfNotExists();
 if(localSplitFile != null) {
 numSplits = tableAssistant.
presplitAndWriteHDFSFile(conf, localSplitFile, splitFileInHDFS);
 }
 RangePartitioner.setSplitFile(job, splitFileInHDFS);
 job.setNumReduceTasks(numSplits + 1);

 if(job.waitForCompletion(true)) {
 tableAssistant.loadImportDirectory(conf, outputStr);
 }
 return 0;
 }

Chapter 10

259

8. Create printUsage() and clearOutputDir() to show argument order and to
automatically clear the supplied output directory.
 private String printUsage() {
 return "<input> <output> <instance_name> <tablename> +
 "<username> <password> <zoohosts> <splits_file_
path>";
 }

 private Path clearOutputDir(String outputStr)
 throws IOException {
 FileSystem fs = FileSystem.get(conf);
 Path path = new Path(outputStr);
 fs.delete(path, true);
 return path;
 }

9. Create a static nested map class called ACLEDIngestMapper.java.
 public static class ACLEDIngestMapper
 extends Mapper<LongWritable, Text, Text, Text> {

 private Text outKey = new Text();
 private static final Pattern tabPattern =
 Pattern.compile("[\\t]");
 private ACLEDRowIDGenerator gen = new
 ACLEDRowIDGenerator();

 protected void map(LongWritable key, Text value,
 Context context) throws IOException,
InterruptedException {

 String[] values =
 tabPattern.split(value.toString());
 if(values.length == 8) {
 String [] rowKeyFields = new String[]
 // lat,lon,timestamp
 {values[4], values[5], values[1]};

 outKey.set(gen.getRowID(rowKeyFields));
 context.write(outKey, value);
 } else {
 context.getCounter("ACLED Ingest",
 "malformed records").increment(1l);
 }
 }
 }

Persistence Using Apache Accumulo

260

10. Create a static nested reduce class called ACLEDIngestReducer.java.
 public static class ACLEDIngestReducer
 extends Reducer<Text, Text, Key, Value> {

 private Key outKey;
 private Value outValue = new Value();
 private Text cf = new Text("cf");
 private Text qual = new Text();
 private static final Pattern tabPattern =
 Pattern.compile("[\\t]");

 @Override
 protected void reduce(Text key, Iterable<Text> values,
 Context context) throws
 IOException, InterruptedException {

 int found = 0;
 for(Text value : values) {
 String[] cells =
 tabPattern.split(value.toString());
 if(cells.length == 8) {
 // don't write duplicates
 if(found < 1) {
 write(context, key, cells[3],"atr");
 write(context, key, cells[1], "dtg");
 write(context, key, cells[7], "fat");
 write(context, key, cells[4], "lat");
 write(context, key, cells[0], "loc");
 write(context, key, cells[5], "lon");
 write(context, key, cells[6], "src");
 write(context, key, cells[2],"type");
 } else {
 context.getCounter("ACLED Ingest",
 "duplicates").increment(1l);
 }
 } else {
 context.getCounter("ACLED Ingest",
"malformed records missing a field").increment(1l);
 }
 found++;
 }
 }

Chapter 10

261

11. Create the following method inside the reduce class to help output key-value pairs:
 private void write(Context context, Text key,
 String cell, String qualStr)
 throws IOException, InterruptedException {
 if(!cell.toUpperCase().equals("NULL")) {
 qual.set(qualStr);
 outKey = new Key(key, cf, qual,
 System.currentTimeMillis());
 outValue.set(cell.getBytes());
 context.write(outKey, outValue);
 }
 }

 }

 @Override
 public void setConf(Configuration conf) {
 this.conf = conf;
 }

 @Override
 public Configuration getConf() {
 return conf;
 }

12. Add the main class to submit an instance of your job to the ToolRunner class.
 public static void main(String[] args) throws Exception {
 Configuration conf =
 CachedConfiguration.getInstance();
 args = new GenericOptionsParser(conf,
 args).getRemainingArgs();
 ToolRunner.run(new ACLEDIngest(conf), args);
 }
}

13. Save the code and build accumulo-examples.jar to the base working directory.

14. Create a file named splits.txt in the base working folder with the following
strings: 00, 01, 10, 11; each on their own line in the file.

Persistence Using Apache Accumulo

262

15. Create a launcher shell script named bulk_ingest.sh in the base working folder
that has the following contents:
tool.sh accumulo_examples.jar examples.accumulo.ACLEDIngest\

 /input/acled_cleaned/\

 /output/accumulo_acled_load/\

 test\

 acled\

 root\

 password\

 localhost:2181\

 splits.txt

16. Run the script. You should see the job execute in the MapReduce WebUI. Upon
completion, the ACLED data should be available for scan under the table acled
in Accumulo.

How it works...
The program takes in eight arguments, each of which is very important. The input location
is where MapReduce will find the ACLED data. The output folder is where it will output data
in Accumulo's native RFile format. The string test is our testing Accumulo instance
name stored in Zookeeper. The string acled is our desired table name in Accumulo.
We authenticate with the Accumulo instance using the strings root:password. For this
execution, we supplied one Zookeeper host on localhost:2181. Finally, splits.txt
is used to help presplit our newly created acled table.

The program clears any previous folder located in our output location. We configure the
AccumuloFileOutputFormat to write to this location. For this job, the mapper will output
the type Text for both the key and the value.

AccumuloTableAssistant utilizes the Builder pattern to chain setter calls for object
instantiation and helps avoid accidentally misplacing the arguments during construction
time. We'll create the table acled if it does not exist, and will use the assistant to presplit
the table based on our locally supplied splits.txt file. Without presplitting the table at
creation time, the RangePartitioner class would force all of the intermediate key-value
pairs to a single reducer. It is much more efficient to create presplit tablets based on
expected row-key distribution and to allow multiple reducers to build RFiles in parallel. We
set the number of reducers to the number of entries in our splits.txt file plus 1 to handle
keys that fall above our highest split point (11). Finally, we are ready to submit the job and
to examine the map and reduce phases.

Chapter 10

263

Each map task JVM creates an internal instance of ACLEDRowIDGenerator. See the
Designing a row key to store geographic events in Accumulo recipe in this chapter for an
in-depth explanation of how this class works. Our data is tab-delimited and follows a very
strict column ordering, thus we can hand-pick the column indices to read the values for lat,
lon, and dtg in that respective order. The key generator needs these fields to make a valid
composite geospatial and reverse timestamp rowID. We output the generated row key with
the text value that was read for the line. This produces a distinct intermediate key for every
unique rowID we wish to insert into Accumulo.

The reducer is responsible for taking our generated rowID and reading through any other
delimited lines that output an equivalent rowID. The rowID generator in the map phase builds
unique rowIDs based on the composite of lat, lon, and dtg. By definition, an ACLED event
that took place in the exact same lat/lon with the same reverse timestamp, would be grouped
to the same intermediate key for the reducer. However, having multiple ACLED events with the
exact same rowID means that we have duplicate entries we wish to ignore. Therefore, we only
want to preserve the first value collected in the Iterable object. This job does not do any
duplicate merging. We use a counter to keep track of duplicate occurrences, as well as invalid
lines that don't split properly. Since we are directly writing instances of Key/Value as RFiles,
Accumulo requires key/value objects to be inserted in a sorted order. The rowIDs are naturally
the same for each qualifier, and the column family is a static label cf, but it's very important
that we maintain lexicographical ordering while considering the write order for our qualifier
labels. Fortunately, our data is very predictable, and we hardcode the column value reads based
on the alphabetic ordering of our qualifier labels.

Once the job is finished, and we have all of the RFiles for the presplit tablets, we use the assistant
instance to read all of the files produced to the output directly and place them in the appropriate
tablet. The data is immediately available for querying in the acled table in Accumulo.

There's more...
Here is a bit more explanation on some of the design choices you see in this recipe:

AccumuloTableAssistant.java
This class is designed for re-use across different Accumulo data loading and management
applications. Since it requires five input strings for operation, the Builder pattern was an
obvious choice to prevent accidental variable assignment constructions. See Effective Java
2.0 by Joshua Block for more detail on the Builder design pattern.

Split points
The choice of 00, 01, 10, and 11 as split points was entirely arbitrary. It was more to
emphasize the importance of presplitting Accumulo tables during creation. Choosing the
right split points really depends on the distribution of your rowID ranges. Too few split points
and job throughput will bottleneck at the reduce stage. Too many, and you may start to waste
resources and spin up time on underutilized reduce task JVMs.

Persistence Using Apache Accumulo

264

AccumuloOutputFormat versus AccumuloFileOutputFormat
If you need to ingest data at a massive volume, AccumuloFileOutputFormat is
the obvious choice. Producing RFiles for direct insert into tablets is not subject to the
AccumuloOutputFormat overhead of writing mutations directly to the Accumulo table. On
the other hand, if your MapReduce job is not write-intensive, it can be easier to work directly
with Mutation instances instead of RFiles. Moreover, if your job does not require reduction
and is map-only, AccumuloOutputFormat and writing direct mutations would be a much
simpler design choice.

See also
 f Designing a row key to store geographic events in Accumulo

Setting a custom field constraint for
inputting geographic event data in
Accumulo

In this recipe, we will build a custom Constraint class to limit the types of mutations we
can apply to event date values in an Accumulo table. Specifically, we want newly entered
values to conform to a particular SimpleDateFormat pattern, but these values should
not be in the future according to the system time on the TabletServer.

Getting ready
This recipe will be the easiest to test over a pseudo-distributed Hadoop cluster with
Accumulo 1.4.1 and Zookeeper 3.3.3 installed. The shell script in this recipe assumes that
Zookeeper is running on the host localhost and on the port 2181; you can change this
to suit your environment needs. The Accumulo installation's bin folder needs to be on your
environment path.

For this recipe you'll need to create an Accumulo instance named test with user as root
and password as password.

You will need a table by the name acled to exist in the configured Accumulo instance.

It is also highly recommended that you go through the Using MapReduce to bulk import
geographic event data into Accumulo recipe of this chapter. This will give you some sample
data with which you can experiment.

Chapter 10

265

How to do it...
Follow these steps to implement and install a constraint in Accumulo:

1. Open the Java IDE editor of your choice. You will need to configure the Accumulo
core and Hadoop classpath dependencies.

2. Create a build template that produces a JAR file named accumulo-examples.jar.

3. Create the package example.accumulo and create the class DtgConstraint.
java with the following content:
package examples.accumulo;

import org.apache.accumulo.core.constraints.Constraint;
import org.apache.accumulo.core.data.ColumnUpdate;
import org.apache.accumulo.core.data.Mutation;

import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.List;

public class DtgConstraint implements Constraint {

 private static final short DATE_IN_FUTURE = 1;
 private static final short MALFORMED_DATE = 2;
 private static final byte[] dtgBytes = "dtg".getBytes();
 private static final DateFormat dateFormatter = new
 SimpleDateFormat("yyyy-MM-dd");

 public String getViolationDescription(short violationCode) {
 if(violationCode == DATE_IN_FUTURE) {
 return "Date cannot be in future";
 } else if(violationCode == MALFORMED_DATE) {
 return "Date does not match simple date format
 yyyy-MM-dd";
 }
 return null;
 }

Persistence Using Apache Accumulo

266

4. Implement the check()method.
 @Override
 public List<Short> check(Environment env, Mutation mutation) {
 List<Short> violations = null;
 try {
 for(ColumnUpdate update : mutation.getUpdates()) {
 if(isDtg(update)) {
 long dtgTime = dateFormatter.parse(new
 String(update.getValue())).getTime();
 long currentMillis =
 System.currentTimeMillis();
 if(currentMillis < dtgTime) {
 violations = checkAndAdd(
 violations, DATE_IN_FUTURE);
 }
 }
 }
 } catch (ParseException e) {
 violations = checkAndAdd(violations,
 MALFORMED_DATE);
 }
 return violations;
 }

5. Do a byte comparison to check if the update is for the qualifier dtg.
 private boolean isDtg(ColumnUpdate update) {
 byte[] qual = update.getColumnQualifier();
 if(qual.length != dtgBytes.length)
 return false;
 for (int i = 0; i < qual.length; i++) {
 if(!(qual[i] == dtgBytes[i])) {
 return false;
 }
 }
 return true;
 }

 private List<Short> checkAndAdd(List<Short> violations,
 short violationCode) {
 if(violations == null)
 violations = new ArrayList<Short>();
 violations.add(violationCode);
 return violations;
 }
}

Chapter 10

267

6. Save the class.

7. In the same package, examples.accumulo, create the class
DtgConstraintMain.java with the following content:
package examples.accumulo;

import org.apache.accumulo.core.client.*;
import org.apache.accumulo.core.conf.Property;
import org.apache.accumulo.core.data.ConstraintViolationSummary;
import org.apache.accumulo.core.data.Mutation;
import org.apache.accumulo.core.data.Value;
import org.apache.hadoop.io.Text;

import java.util.List;

public class DtgConstraintMain {

 public static final long MAX_MEMORY= 10000L;
 public static final long MAX_LATENCY=1000L;
 public static final int MAX_WRITE_THREADS = 4;
 public static final String TEST_TABLE = "acled";
 public static final Text COLUMN_FAMILY = new Text("cf");
 public static final Text DTG_QUAL = new Text("dtg");

8. The main() method tries to insert both valid and invalid dtg values to test our
constraint.
 public static void main(String[] args) throws Exception {
 if(args.length < 6) {
System.err.println("examples.accumulo.DtgConstraintMain <row_id>
<dtg> <instance_name> <user> <password> <zookeepers>");
 System.exit(0);
 }
 String rowID = args[0];
 byte[] dtg = args[1].getBytes();
 String instanceName = args[2];
 String user = args[3];
 String pass = args[4];
 String zooQuorum = args[5];
 ZooKeeperInstance ins;
 Connector connector = null;
 BatchWriter writer = null;
 try {

 ins = new ZooKeeperInstance(instanceName,
 zooQuorum);

Persistence Using Apache Accumulo

268

 connector = ins.getConnector(user, pass);
 writer = connector.createBatchWriter(TEST_TABLE, MAX_
MEMORY,
 MAX_LATENCY, MAX_WRITE_THREADS);
connector.tableOperations().setProperty(TEST_TABLE, Property.
TABLE_CONSTRAINT_PREFIX.getKey() + 1, DtgConstraint.class.
getName());
 Mutation validMutation = new Mutation(new
 Text(rowID));
 validMutation.put(COLUMN_FAMILY, DTG_QUAL,
 new Value(dtg));
 writer.addMutation(validMutation);
 writer.close();
 } catch (MutationsRejectedException e) {
 List<ConstraintViolationSummary> summaries =
 e.getConstraintViolationSummaries();
 for (ConstraintViolationSummary sum : summaries) {
 System.err.println(sum.toString());
 }
 }
 }
}

9. Build the JAR file, accumulo-examples.jar.

10. Navigate to your local Accumulo installation folder, $ACCUMULO_HOME/conf, and
edit the file accumulo-site.xml.

11. Edit the general.classpaths property in the accumulo-site.xml file to include
the path to accumulo-examples.jar.

12. Restart the local TabletServer for Accumulo using $ACCUMULO_HOME/bin/tdown.
sh and tup.sh.

13. Issue the following command to test whether the JAR file is on the Accumulo
classpath:
$ accumulo classpath

You should see a file //printout with accumulo-examples.jar.

14. In the base working folder where accumulo-examples.jar is located, create a
new shell script named run_constraint_test.sh with the following commands.
Be sure to change ACCUMULO-LIB, HADOOP_LIB, and ZOOKEEPER_LIB to match
your local paths.
ACCUMULO_LIB=/opt/cloud/accumulo-1.4.1/lib/*

HADOOP_LIB=/Applications/hadoop-0.20.2-cdh3u1/*:/Applications/
hadoop-0.20.2-cdh3u1/lib/*

Chapter 10

269

ZOOKEEPER_LIB=/opt/cloud/zookeeper-3.4.2/*

java -cp $ACCUMULO_LIB:$HADOOP_LIB:$ZOOKEEPER_LIB:accumulo-
examples.jar examples.accumulo.DtgConstraintMain\

 00993877573819_9223370801921575807\

 2012-08-07\

 test\

 root\

 password\

 localhost:2181

15. Save and run the script. It should silently complete.

16. Edit the script run_constraint_test.sh and change the value of the dtg
parameter from 2012-08-07 to 2030-08-07.

17. Save and re-run the script. You should see a constraint error printed to the console
indicating Date cannot be in future.

How it works...
Our Constraint class looks through every mutation and determines if the column
qualifier matching dtg is involved. If the ColumnUpdate object mutates a key-value
pair containing the qualifier dtg, examine the value for errors. This constraint has the
following two violation conditions:

1. The date does not match the Java SimpleDateFormat pattern, yyyy-MM-dd. So
1970-12-23 and 2012-02-11 will pass, but 70-12-23 or 12-20-22 will generate an
error and add a constraint violation.

2. The date is in the future. At the time of this writing, 2030-08-07 was 18 years in
the future. If the column update contains a future date, add a constraint violation.

The main class takes all of the required parameters to connect to the Accumulo instance
and adds the Constraint class to the table. It then attempts to perform a mutation on the
supplied rowID using the argument value for dtg. If the mutation is rejected for any reason,
print out the constraint violations to see if the DtgConstraint was violated.

We can modify the dtg argument in the shell script to see the different constraint violation
errors our class generated.

There's more...
Constraints are a powerful feature for data policy enforcement in Accumulo. The following
headings discuss a few additional things you should know.

Persistence Using Apache Accumulo

270

Bundled Constraint classes
The Accumulo core offers numerous constraint implementations out of the box. They cover a
variety of common checked conditions and are already on the TabletServer classpath. Check
out the example implementations in the simple example's module located at the package
org.apache.accumulo.examples.simple.constraints. Cell visibility and other core
system checks in Accumulo use constraint implementations behind the scenes.

Installing a constraint on each TabletServer
If after installing a custom constraint to your Accumulo instance, you'll notice every
mutation being rejected; it's likely that, for whatever reason, the TabletServer server
did not find your Constraint class on the classpath. Check the TabletServer logs
for ClassNotFoundExceptions. This can happen if the table configuration has the
Constraint class listed but cannot find a class matching the fully qualified name. In
a fully-distributed setup, make sure to restart every TabletServer after modifying each
general classpath.

See also
 f Using MapReduce to bulk import geographic event data into Accumulo

 f Enforcing cell-level security on scans using Accumulo

Limiting query results using the regex
filtering iterator

This recipe will use the built-in RegExFilter class in Accumulo to return only key-value pairs,
where the qualifier is of a particular source value. The filtering will be distributed across the
different TabletServers that house the table acled.

Getting ready
This recipe will be the easiest to test over a pseudo-distributed Hadoop cluster with
Accumulo 1.4.1 and Zookeeper 3.3.3 installed. The shell script in this recipe assumes that
Zookeeper is running on the host localhost and on the port 2181; you can change this
to suit your environment needs. The Accumulo installation's bin folder needs to be on your
environment path.

For this recipe you'll need to create an Accumulo instance named test with the user as root
and password as password.

To see the filtered results from this recipe, you will need to complete the Using MapReduce to
bulk import geographic event data into Accumulo recipe listed earlier in this chapter. This will
give you some sample data to experiment with.

Chapter 10

271

How to do it...
Follow these steps to use the Regex filtering iterator:

1. Open your Java IDE of choice. You will need to configure the Accumulo core and
Hadoop classpath dependencies.

2. Create a build template that produces a JAR file named accumulo-examples.jar.

3. Create the package example.accumulo and add the class SourceFilterMain.
java with the following content:
package examples.accumulo;

import org.apache.accumulo.core.client.Connector;
import org.apache.accumulo.core.client.IteratorSetting;
import org.apache.accumulo.core.client.Scanner;
import org.apache.accumulo.core.client.ZooKeeperInstance;
import org.apache.accumulo.core.data.Key;
import org.apache.accumulo.core.data.Value;
import org.apache.accumulo.core.iterators.user.RegExFilter;
import org.apache.accumulo.core.security.Authorizations;
import org.apache.hadoop.io.Text;

import java.util.HashMap;
import java.util.Map;

public class SourceFilterMain {

 public static final String TEST_TABLE = "acled";

 public static final Text COLUMN_FAMILY = new Text("cf");
 public static final Text SRC_QUAL = new Text("src");

4. The main() method handles argument parsing and querying with the filter:
 public static void main(String[] args) throws Exception {
 if(args.length < 5) {
 System.err.println("usage: <src> <instance
 name> <user> <password> <zookeepers>");
 System.exit(0);
 }
 String src = args[0];
 String instanceName = args[1];
 String user = args[2];
 String pass = args[3];
 String zooQuorum = args[4];

Persistence Using Apache Accumulo

272

 ZooKeeperInstance ins = new
 ZooKeeperInstance(instanceName, zooQuorum);
 Connector connector = ins.getConnector(user, pass);
 Scanner scan = connector.createScanner(TEST_TABLE,
 new Authorizations());
 scan.fetchColumn(COLUMN_FAMILY, SRC_QUAL);
 IteratorSetting iter = new IteratorSetting(15,
 "regexfilter", RegExFilter.class);
 iter.addOption(RegExFilter.VALUE_REGEX, src);
 scan.addScanIterator(iter);
 int count = 0;
 for(Map.Entry<Key, Value> row : scan) {
 System.out.println("row: " +
 row.getKey().getRow().toString());
 count++;
 }
 System.out.println("total rows: " + count);
 }
}

5. Save and build the JAR file accumulo-examples.jar.

6. In the base working folder where accumulo-examples.jar is located, create a
new shell script named run_src_filter.sh with the following commands. Be
sure to change ACCUMULO-LIB, HADOOP_LIB, and ZOOKEEPER_LIB to match
your local paths:
ACCUMULO_LIB=/opt/cloud/accumulo-1.4.1/lib/*

HADOOP_LIB=/Applications/hadoop-0.20.2-

cdh3u1/*:/Applications/hadoop-0.20.2-cdh3u1/lib/*

ZOOKEEPER_LIB=/opt/cloud/zookeeper-3.4.2/*

java -cp $ACCUMULO_LIB:$HADOOP_LIB:$ZOOKEEPER_LIB:accumulo-
examples.jar examples.accumulo.SourceFilterMain\

 'Panafrican News Agency'\

 test\

 root\

 password\

 localhost:2181

7. Save and run the script. You should see 49 rows returned for the source
Panafrican News Agency.

Chapter 10

273

How it works...
The script takes in the required parameters necessary to connect to the Accumulo table
acled, plus an additional parameter for a source qualifier value to filter on. We set up a
Scanner instance with blank authorizations and configure an IteratorSetting of type
RegExFilter to do the regex comparison on the TabletServer. Our regex is a very simple
direct match on the supplied source argument.

We then iterate over the result set and printout the rowID for any matching key-value pairs.
At the end, we print a tally of how many key-value pairs were found matching that source.

The responsibility of filtering key-value pairs based on the value is distributed across the
various TabletServers that hold tablets for the acled table. The client only sees rows that
match the filter, and can immediately begin processing.

See also
 f Using MapReduce to bulk import geographic event data into Accumulo

 f Enforcing cell-level security on scans using Accumulo

Counting fatalities for different versions of
the same key using SumCombiner

This recipe will use the built-in SumCombiner in Accumulo to treat the cell value associated
with the qualifier fat as long and for each key in the acled table, to sum the total for all
versions of the key.

Getting ready
This recipe will be easiest to test over a pseudo-distributed Hadoop cluster with Accumulo 1.4.1
and Zookeeper 3.3.3 installed. The shell script in this recipe assumes that Zookeeper is running
on the host localhost and on the port 2181; you can change this to suit your environment
needs. The Accumulo installation's bin folder needs to be on your environment path.

For this recipe, you'll need to create an Accumulo instance named test with user as root
and password as password.

You will need a table by the name acled to exist in the configured Accumulo instance. If you
have an existing table by that name from an earlier recipe, delete and recreate it.

It is also highly recommended that you complete the Using MapReduce to bulk import
geographic event data into Accumulo recipe earlier in this chapter. This will give you some
sample data to experiment with.

Persistence Using Apache Accumulo

274

How to do it...
Follow these steps to issue a query using SumCombiner:

1. Open your Java IDE of choice. You will need to configure the Accumulo core and
Hadoop classpath dependencies.

2. Create a build template that produces a JAR file named accumulo-examples.jar.

3. Create the package example.accumulo and add the class
TotalFatalityCombinerMain.java with the following content:
package examples.accumulo;

import org.apache.accumulo.core.client.*;
import org.apache.accumulo.core.client.Scanner;
import org.apache.accumulo.core.data.*;
import org.apache.accumulo.core.iterators.Combiner;
import org.apache.accumulo.core.iterators.LongCombiner;
import org.apache.accumulo.core.iterators.user.SummingCombiner;
import org.apache.accumulo.core.security.Authorizations;
import org.apache.hadoop.io.Text;

import java.util.*;

public class TotalFatalityCombinerMain {

 public static final long MAX_MEMORY= 10000L;
 public static final long MAX_LATENCY=1000L;
 public static final int MAX_WRITE_THREADS = 4;
 public static final String TEST_TABLE = "acled";
 public static final Text COLUMN_FAMILY = new Text("cf");
 public static final Text FATALITIES_QUAL = new Text("fat");

4. The main() method handles the argument parsing:
 public static void main(String[] args) throws Exception {
 if(args.length < 4) {
 System.err.println("usage: <instance name>
 <user> <password> <zookeepers>");
 System.exit(0);
 }
 String instanceName = args[0];
 String user = args[1];
 String pass = args[2];
 String zooQuorum = args[3];
 ZooKeeperInstance ins = new

Chapter 10

275

 ZooKeeperInstance(instanceName, zooQuorum);
 Connector connector = ins.getConnector(user, pass);
 if(!connector.tableOperations().exists(TEST_TABLE))
 connector.tableOperations().create(TEST_TABLE);

 BatchWriter writer = connector.createBatchWriter(TEST_
TABLE, MAX_MEMORY, MAX_LATENCY, MAX_WRITE_THREADS);

5. Write some sample data with the exact same rowID eventA, column family,
and qualifier:
 Mutation m1 = new Mutation("eventA");
 m1.put(COLUMN_FAMILY, FATALITIES_QUAL, new
 Value("10".getBytes()));

 Mutation m2 = new Mutation("eventA");
 m2.put(COLUMN_FAMILY, FATALITIES_QUAL, new
 Value("5".getBytes()));

6. Write an additional key with rowID eventB:
 Mutation m3 = new Mutation("eventB");
 m3.put(COLUMN_FAMILY, FATALITIES_QUAL, new
 Value("7".getBytes()));

 writer.addMutation(m1);
 writer.addMutation(m2);
 writer.addMutation(m3);
 writer.close();

7. Configure an IteratorSetting for the scanner to use the combiner:
 IteratorSetting iter = new IteratorSetting(1,
 SummingCombiner.class);
 LongCombiner.setEncodingType(iter,
 SummingCombiner.Type.STRING);
 Combiner.setColumns(iter,
 Collections.singletonList(new
 IteratorSetting.Column(COLUMN_FAMILY,
 FATALITIES_QUAL)));
 Scanner scan = connector.createScanner(TEST_TABLE,
 new Authorizations());
 scan.setRange(new Range(new Text("eventA"), new
 Text("eventB")));
 scan.fetchColumn(COLUMN_FAMILY, FATALITIES_QUAL);
 scan.addScanIterator(iter);
 for(Map.Entry<Key, Value> item : scan) {

Persistence Using Apache Accumulo

276

 System.out.print(item.getKey().getRow().toString() +
":
 fatalities: ");
 System.out.println(new
 String(item.getValue().get()));
 }
 }
}

8. Save and build the JAR file accumulo-examples.jar.

9. In the base working folder where the accumulo-examples.jar file is located,
create a new shell script namedrun_combiner.sh with the following commands.
Be sure to change ACCUMULO-LIB, HADOOP_LIB, and ZOOKEEPER_LIB to match
your local paths:
ACCUMULO_LIB=/opt/cloud/accumulo-1.4.1/lib/*

HADOOP_LIB=/Applications/hadoop-0.20.2-cdh3u1/*:/Applications/
hadoop-0.20.2-cdh3u1/lib/*

ZOOKEEPER_LIB=/opt/cloud/zookeeper-3.4.2/*

java -cp $ACCUMULO_LIB:$HADOOP_LIB:$ZOOKEEPER_LIB:accumulo-
examples.jar examples.accumulo.TotalFatalityCombinerMain\

test\

root\

 password\

 localhost:2181

10. Save and run the script.

11. You should see the following console printout when the application finishes:
eventA: fatalities: 15

eventB: fatalities: 7

12. Re-run the script.

13. You should now see twice the count for each event:

eventA: fatalities: 30

eventB: fatalities: 14

Chapter 10

277

How it works...
The class TotalFatalityCombinerMain reads the required arguments to connect to
Accumulo and instantiates a BatchWriter instance to write out test data to the acled table.
We write two mutations for two different versions of the same key containing the rowID eventA.
One contains the qualifier fat with value 10 and the other a value of 5. We also write one
mutation with the key containing the rowID eventB with a value of 7 for the qualifier fat.

We then use a Scanner instance to apply the SumCombiner at scan time over the
key-value pairs in the table. The combiner's job is to collect different long values associated
with the exact same key and emit the sum of those long values. The values 5 and 10 are both
associated with the same key for the rowID eventA, and are combined to produce a value 15.
There is only one key version associated with the rowID eventB, so the single value 7 remains
the total sum for that key.

If we re-run this application, the previous mutations are still stored in the same Accumulo
table. Re-running the application applies the same mutations once more, adding the values
10 and 5 as key-value entries for the rowID eventA, and 7 for eventB.

Re-running the Combiner scanner now shows four entries for the rowID eventA (5, 10, 5,
and 10) as well as two entries for the rowID eventB (7, 7). The result is double the count
from our previous execution. For each time we re-run this application without clearing the
table, the results are increased by +15 and +7.

This happens because at the raw key-value level, our mutations are inserting new key-value
pairs to the table with different timestamps every time the application is called. Our combiner
sees all timestamped versions of every distinct key.

There's more...
Here are some more helpful tips regarding combiners:

Combiners are on a per-key basis, not across all keys
This can cause confusion with new Accumulo users. Combiners use the Accumulo iterator
pattern for key-value aggregation, but only a per-key basis across different versions of that
key. If you have a requirement to do table-wide aggregation for the values of a common
qualifier, you will likely still want to use MapReduce. See the Aggregating sources in
Accumulo using MapReduce recipe in this chapter.

Persistence Using Apache Accumulo

278

Combiners can be applied at scan time or applied to the table
configuration for incoming mutations
This recipe uses the combiner to aggregate the qualifier values at scan time. Accumulo also
supports persistent combiners stored in the table configuration that combine values during
mutation writes.

See also
 f Using MapReduce to bulk import geographic event data into Accumulo

 f Limiting query results using the regex filtering iterator

 f Aggregating sources in Accumulo using MapReduce

Enforcing cell-level security on scans using
Accumulo

Accumulo offers the ability to apply cell visibility labels for each unique key/value in a table,
which is arguably its most distinguishing feature from other BigTable implementations. This
recipe will demonstrate one way to apply cell-level security. The code in this recipe will write
several mutations that can only be scanned and read with the proper authorizations.

Getting ready
This recipe will be the easiest to test over a pseudo-distributed Hadoop cluster with
Accumulo 1.4.1 and Zookeeper 3.3.3 installed. The shell script in this recipe assumes that
Zookeeper is running on the host localhost and on the port 2181; you can change this
to suit your environment needs. The Accumulo installation's bin folder needs to be on your
environment path.

For this recipe you'll need to create an Accumulo instance named test with user as root
and password as password.

You will need a table by the name acled to exist in the configured Accumulo instance. If you
have an existing table by that name from an earlier recipe, delete, and recreate it.

It is also highly recommended that you go through the Using MapReduce to bulk import
geographic event data into Accumulo recipe earlier in this chapter. This will give you some
sample data to experiment with.

Chapter 10

279

How to do it...
The following are the steps to read/write data to Accumulo using cell visibility controls:

1. Open the Java IDE of your choice. You will need to configure the Accumulo core and
Hadoop classpath dependencies.

2. Create a build template that produces a JAR file named accumulo-examples.jar.

3. Create the package example.accumulo and add the class SecurityScanMain.
java with the following content:
package examples.accumulo;

import org.apache.accumulo.core.client.*;
import org.apache.accumulo.core.data.Key;
import org.apache.accumulo.core.data.Mutation;
import org.apache.accumulo.core.data.Value;
import org.apache.accumulo.core.security.Authorizations;
import org.apache.accumulo.core.security.ColumnVisibility;
import org.apache.hadoop.io.Text;

import java.util.Map;

public class SecurityScanMain {

 public static final long MAX_MEMORY= 10000L;
 public static final long MAX_LATENCY=1000L;
 public static final int MAX_WRITE_THREADS = 4;
 public static final String TEST_TABLE = "acled";
 public static final Text COLUMN_FAMILY = new Text("cf");
 public static final Text THREAT_QUAL = new
 Text("trt_lvl");

 public static void main(String[] args)throws Exception {
 if(args.length < 4) {
 System.err.println("usage: <instance name> <user>
<password> <zookeepers>");
 System.exit(0);
 }
 String instanceName = args[0];
 String user = args[1];
 String pass = args[2];
 String zooQuorum = args[3];

Persistence Using Apache Accumulo

280

4. Create a Connector instance for our user or pass variable to the test
Accumulo instance.
 ZooKeeperInstance ins = new
 ZooKeeperInstance(instanceName, zooQuorum);
 Connector connector = ins.getConnector(user, pass);
 if(!connector.tableOperations().exists(TEST_TABLE))
 connector.tableOperations().create(TEST_TABLE);

5. Get the root user's current authorizations.
 Authorizations allowedAuths =
connector.securityOperations().getUserAuthorizations(user);
 BatchWriter writer =
connector.createBatchWriter(TEST_TABLE, MAX_MEMORY,
 MAX_LATENCY, MAX_WRITE_THREADS);

6. Write the test mutations.
 Mutation m1 = new Mutation(new Text("eventA"));
 m1.put(COLUMN_FAMILY,
 THREAT_QUAL,
 new ColumnVisibility("(p1|p2|p3)"),
 new Value("moderate".getBytes()));
 Mutation m2 = new Mutation(new Text("eventB"));
 m2.put(COLUMN_FAMILY,
 THREAT_QUAL,
 new ColumnVisibility("(p4|p5)"),
 new Value("severe".getBytes()));
 writer.addMutation(m1);
 writer.addMutation(m2);
 writer.close();

7. Create a scanner with our user's authorizations, and fetch any key-value pairs
where the key contains the qualifier threat.
 Scanner scanner = connector.createScanner(TEST_TABLE,
allowedAuths);
 scanner.fetchColumn(COLUMN_FAMILY, THREAT_QUAL);
 boolean found = false;
 for(Map.Entry<Key, Value> item: scanner) {
 System.out.println("Scan found: " + item.getKey().
getRow().toString() + " threat level: " + item.getValue().
toString());
 found = true;
 }

Chapter 10

281

8. If this condition matches, our user is not authorized to see any event threats.
 if(!found)
 System.out.println("No threat levels are visible with
your current user auths: " + allowedAuths.serialize());
 }
}

9. Save and build the JAR file accumulo-examples.jar.

10. In the base working folder where accumulo-examples.jar is located, create
a new shell script named run_security_auth_scan.sh with the following
commands. Be sure to change ACCUMULO-LIB, HADOOP_LIB, and ZOOKEEPER_LIB
to match your local paths.
ACCUMULO_LIB=/opt/cloud/accumulo-1.4.1/lib/*

HADOOP_LIB=/Applications/hadoop-0.20.2-cdh3u1/*:/Applications/
hadoop-0.20.2-cdh3u1/lib/*

ZOOKEEPER_LIB=/opt/cloud/zookeeper-3.4.2/*

java -cp $ACCUMULO_LIB:$HADOOP_LIB:$ZOOKEEPER_LIB:accumulo-
examples.jar examples.accumulo.SecurityScanMain\

 test\

 root\

 password\

 localhost:2181

11. Save and run the script.

12. You should see the following output in the console:
no threat levels are visible with your current user auths:

13. Launch the Accumulo shell.
accumulo shell –u root –p password

14. Run the setauths command to see a list of options.
$ root@test> setauths

15. Run the following command:
$ root@test> setauths –s p1

16. Re-run the script run_security_auth_scan.sh.

17. You should see the following output in the console:
Scan found: eventA threat level: moderate

Persistence Using Apache Accumulo

282

18. Re-enter the Accumulo shell and run the following command:
$ root@test> setauths -s p1,p4

19. Re-run the script run_security_auth_scan.sh.

20. You should see the following output in the console:

Scan found: eventA threat level: moderate

Scan found: eventB threat level: severe

How it works...
The class SecurityScanMain reads the required arguments to connect to Accumulo and
instantiates a BatchWriter instance to write out test data to the acled table. We write
two mutations to the table. The first is for rowID eventA and the column visibility expression
(p1|p2|p3). The second is for rowID eventB and the column visibility (p4|p5). The column
visibility expressions are very simple Boolean expressions. Before a scan can occur over an
Accumulo table, the client must supply authorization tokens for the connected user. Accumulo
will compare the given tokens against the column visibility label on each key to determine
visibility for that user over the given key/value. The expression (p1|p2|p3) implies that a
scanner reading the key must present an Authorizations object that supplies p1, p2,
or p3. By default, the root user does not have any scanning authorization tokens. The call
to the getUserAuthorizations(user) method on the connector currently returns no
authorization tokens. To view eventA, we need to present p1, p2, or p3; none of which are
currently listed for the root user. To view eventB, we need to present p4 or p5; which the root
user also does not have. Once we go into the shell and add p1 for the root user, our scan will
present the authorization p1 and find a successful Boolean match to eventA. Once we set
the scan tokens for the root user to p1,p4, we can view both eventA and eventB.

There's more...
Cell visibility is a feature with more complexity than you might think. Here are some things to
know about cell security in Accumulo:

Writing mutations for unauthorized scanning
Authorization tokens restrict what users can see during scans, but not what column visibility
expressions they can write on mutations.

This is the default behavior and, for many systems, is undesirable. If you would like to enforce
this policy in your Accumulo installation, you can add the Constraint class implementation
org.apache.accumulo.core.security.VisibilityConstraint as a system-wide
constraint. Once applied to the Accumulo installation, users will be barred from writing
mutations containing column visibility labels they themselves are not authorized to read.

Chapter 10

283

ColumnVisibility is part of the key
Different keys containing the exact same rowID, column-family, and qualifier may have
different ColumnVisibility labels. If the most recent timestamped version of a key
contains a ColumnVisibility key that is not viewable by the current scan, the user will
see the next oldest version of that key for which a column visibility token matches, or none
if they are not authorized to see any of the versions.

The normal scanning logic for key/value presentation has the scanner returning the most
recent version of a given key. The cell visibility system adjusts that logic with one additional
condition. The scanner will return the most recently timestamped version of a given key that
matches the supplied authorization tokens.

Supporting more complex Boolean expressions
This recipe shows two very simple disjunction examples of the ColumnVisibilty Boolean
expression. You can apply more complicated expressions, should your application require
them. For example, (((A & B)|C) & D) would match for authorizations that supplied the
label D and either label C or labels A and B.

See also
 f Using MapReduce to bulk import geographic event data into Accumulo
 f Setting a custom field constraint for inputing geographic event data in Accumulo

Aggregating sources in Accumulo using
MapReduce

In this recipe, we will use MapReduce and the AccumuloInputFormat class to count
occurrences of each unique source stored in an Accumulo table.

Getting ready
This recipe will be the easiest to test over a pseudo-distributed Hadoop cluster with Accumulo
1.4.1 and Zookeeper 3.3.3 installed. The shell script in this recipe assumes that Zookeeper
is running on the host localhost and on the port 2181; you can change this to suit your
environment needs. The Accumulo installation's bin folder needs to be on your environment path.

For this recipe you'll need to create an Accumulo instance named test with user as root
and password as password.

You will need a table by the name acled to exist in the configured Accumulo instance.

To see the filtered results from this recipe, you will need to go through the Using MapReduce
to bulk import geographic event data into Accumulo recipe seen earlier in this chapter. This
will give you some sample data to experiment with.

Persistence Using Apache Accumulo

284

How to do it...
The following are the steps to count occurrences of different sources using MapReduce:

1. Open the Java IDE of your choice. You will need to configure the Accumulo core and
Hadoop classpath dependencies.

2. Create a build template that produces a JAR file named accumulo-examples.jar.

3. Create the package example.accumulo and add the class SourceCountJob.
java with the following content:
package examples.accumulo;

import org.apache.accumulo.core.client.mapreduce.
AccumuloInputFormat;
import org.apache.accumulo.core.data.Key;
import org.apache.accumulo.core.data.Value;
import org.apache.accumulo.core.security.Authorizations;
import org.apache.accumulo.core.util.CachedConfiguration;
import org.apache.accumulo.core.util.Pair;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.io.IOException;
import java.lang.Override;
import java.util.HashSet;
public class SourceCountJob extends Configured implements Tool {

 private Configuration conf;
 private static final Text FAMILY = new Text("cf");
 private static final Text SOURCE = new Text("src");

 public SourceCountJob(Configuration conf) {
 this.conf = conf;
 }

Chapter 10

285

4. Add the run() method to conform to the Tool interface and parse the arguments
from the command line.
 @Override
 public int run(String[] args) throws Exception {

 args = new GenericOptionsParser(conf,
 args).getRemainingArgs();
 if(args.length < 6) {
 System.err.println(printUsage());
 System.exit(0);
 }

 String tableName = args[0];
 String outputStr = args[1];
 String instanceName = args[2];
 String user = args[3];
 String pass = args[4];
 String zooQuorum = args[5];

5. Configure the Accumulo input settings.
 AccumuloInputFormat.setInputInfo(conf, user, pass.
getBytes(), tableName, new Authorizations());
 AccumuloInputFormat.setZooKeeperInstance(conf,
instanceName, zooQuorum);
 HashSet<Pair<Text, Text>> columnsToFetch = new
HashSet<Pair<Text,Text>>();
 columnsToFetch.add(new Pair<Text, Text>(FAMILY, SOURCE));
 AccumuloInputFormat.fetchColumns(conf, columnsToFetch);

6. Set up the job, map/reduce classes, and the output location.
 Job job = new Job(conf, "Count distinct sources in
 ACLED");
 job.setInputFormatClass(AccumuloInputFormat.class);
 job.setMapperClass(ACLEDSourceMapper.class);
 job.setMapOutputKeyClass(Text.class);
 job.setMapOutputValueClass(IntWritable.class);
 job.setReducerClass(ACLEDSourceReducer.class);
 job.setCombinerClass(ACLEDSourceReducer.class);
 job.setJarByClass(getClass());
 job.setOutputFormatClass(TextOutputFormat.class);
 FileOutputFormat.setOutputPath(job,
 clearOutputDir(outputStr));
 job.setNumReduceTasks(1);
 return job.waitForCompletion(true) ? 0 : 1;

 }

Persistence Using Apache Accumulo

286

 private String printUsage() {
 return "<tablename> <output> <instance_name>
 <username> <password> <zoohosts>";
 }

 private Path clearOutputDir(String outputStr)
 throws IOException {
 FileSystem fs = FileSystem.get(conf);
 Path path = new Path(outputStr);
 fs.delete(path, true);
 return path;
 }

7. Add the static inner class ACLEDSourceMapper.
 public static class ACLEDSourceMapper
 extends Mapper<Key, Value, Text, IntWritable> {

 private Text outKey = new Text();
 private IntWritable outValue = new IntWritable(1);

 @Override
 protected void map(Key key, Value value,
 Context context) throws IOException,
InterruptedException {

 outKey.set(value.get());
 context.write(outKey, outValue);
 }
 }

8. Add the static inner class ACLEDSourceReducer.
 public static class ACLEDSourceReducer
 extends Reducer<Text, IntWritable, Text,
 IntWritable> {

 private IntWritable outValue = new IntWritable();

 @Override
 protected void reduce(Text key,
 Iterable<IntWritable> values,
 Context context) throws
 IOException, InterruptedException {

 int count = 0;
 for(IntWritable value : values) {

Chapter 10

287

 count += value.get();
 }
 outValue.set(count);
 context.write(key, outValue);
 }
 }

 @Override
 public void setConf(Configuration conf) {
 this.conf = conf;
 }

 @Override
 public Configuration getConf() {
 return conf;
 }

9. Define a main() method to submit the job as a Tool instance.
 public static void main(String[] args) throws Exception {
 Configuration conf =
 CachedConfiguration.getInstance();
 args = new GenericOptionsParser(conf,
 args).getRemainingArgs();
 ToolRunner.run(new SourceCountJob(conf), args);
 }
}

10. Save and build the JAR file accumulo-examples.jar.

11. In the base working folder where accumulo-examples.jar is located,
create a new shell script named source_count.sh with the following commands.
Be sure to change ACCUMULO-LIB, HADOOP_LIB, and ZOOKEEPER_LIB to match
your local paths:
tool.sh accumulo_examples.jar examples.accumulo.SourceCountJob\

 -Dmapred.reduce.tasks=4\

 acled\

 /output/accumulo_source_count/\

 test\

 root\

 password\

 localhost:2181

hadoop fs -cat /output/accumulo_source_count/part* > source_count.
txt

Persistence Using Apache Accumulo

288

12. Save and run the script. You should see the MapReduce job start executing over your
pseudo-distributed cluster.

13. Upon successful completion of the job, you should see the file source_count.txt
in your base working folder. Type in the cat command to see the counts for
each source.

How it works...
We define the SourceCountJob class to implement the Tool interface for ease of remote
submission with the ToolRunner class. The CachedConfiguration.getInstance()
static method sends our Tool instance the correct Accumulo configuration on the classpath.

The run() method parses the arguments necessary to connect to the Accumulo instance
using AccumuloInputFormat. For this job we're only interested in retrieving the column
qualifier src from the column family cf for each key. By default, the scanner will only return
the most recent versions of each key containing the qualifier src. If we wanted to count
source occurrences across every key-value pair in the table for every version, we would have
to configure maxVersions in the input format.

We then set up our job instance with the AccumuloInputFormat and map/reduce classes
required to count each source. As our reducer class is simply adding integers together, we can
re-use the sample implementation for a combiner. We clear any existing output folders and set
the number of reduce tasks to 1 as we are running a pseudo-distributed cluster. Now we are
ready to submit the job to the cluster.

The business logic operates in a very similar manner to the traditional WordCount example.

The AccumuloInputFormat class handles scanning and returning of only key-value pairs
for the qualifier src. Therefore, any key/value instances that enter our ACLEDSourceMapper
class's map() function are already restricted to the data we're interested in aggregating, and
we can simply output 1 to represent one occurrence of that source value in our dataset. The
output key is simply the value of the incoming source.

The reduce class ACLEDSourceReducer simply tallies occurrences for each source, and
outputs the results back to HDFS.

At the end of the shell script, we download and concatenate the different part files together
into one file, source_counts.txt. We now have one single file with newline-separated
source listings and the total number of occurrences for each source.

Index
Symbols
$HADOOP_BIN 8
$SQOOP_HOME 23
-a arguments 205
--as-avrodatafile argument 20
--as-sequencefile argument 20
@BeforeClass annotation 249
--clear-staging-table argument 24
--clustering parameter 205
--clusters parameter 205
-conf argument/flag 244
--connect statement 23
-D argument/flag 244
-e option 109, 179
-file location_regains_by_time.py \

argument 91
-file location_regains_mapper.py \

argument 91
-fs argument/flag 244
-ignorecrc argument 12
--input arguments 204
--input parameter 205
-jobconf mapred.reduce.tasks=1

argument 91
-jobconf num.key.fields.for.partition=1 \

argument 91
-jobconf stream.num.map.output.key.fields=2

\ argument 91
-jt argument/flag 244
-mapper location_regains_mapper.py \

argument 91
-m argument 20
--maxIter parameter 205
-md arguments 205
-ml arguments 205

--namedVector arguments 204
-ng arguments 205
--numClusters parameter 205
--output arguments 204
-output /output/acled_analytic_out \

argument 91
--output parameter 205
--overwrite parameter 205
--password option 23
-reducer location_regains_by_time.py \

argument 91
-s arguments 205
-s option 179
--split-by argument 20
--staging-table argument 24
--table argument 19, 23
--update-key value 24
--username option 23
-usersFile flag 202
-v option 179
-w option 179
-wt arguments 205
-x arguments 205

A
Accumulator interface 76
Accumulo

custom field constraint setting, to input
geographic event data 264-269

geographic event data bulk importing,
MapReduce used 256-263

row key designing, to store geographic
events 246,-254

sources aggregating, MapReduce
used 283-288

SumCombiner, using 273-277

290

used for enforcing cell-level security,
on scans 278-282

AccumuloFileOutputFormat
versus AccumuloOutputFormat 264

AccumuloInputFormat class 288
AccumuloOutputFormat

versus AccumuloFileOutputFormat 264
AccumuloTableAssistant.java 263
ACLED 246-254
ACLEDIngestReducer.java class 260
ACLEDSourceReducer static inner class 286
addCacheArchive() static method 131
Apache Avro

using, to serialize data 50-53
apache_clf.txt dataset 66
Apache Giraph

-e option 179
-s option 179
-v option 179
-w option 179
about 177
community 180
PageRank with 178, 179
scalability tuning 199
single-source shortest-path 180-182
using, to perform distributed breadth-first

search 192-199
Apache Hive

map-side join, using 138-140
optimized full outer joins, using 141-143

Apache logs
transforming into TSV format, MapReduce

used 66-68
Apache Mahout

about 177
clustering with 203, 204
collaborative filtering with 200, 202
sentiment classification 206-208

Apache Mahout 0.6
URL 200

Apache Pig
about 69, 217
functionality extending, Python used 77, 78
merge join, used for joining data 134, 135
record with malformed IP address,

example 224, 225

replicated join, used for joining
data 132, 133

SELECT operation, performing with
GROUP BY operation 125, 126

skewed join, used for joining skewed
data 136, 137

used, for sorting data 73
used for sorting web server log data,

by timestamp 72, 73
using, to load table 125, 126
using to sort web server log data,

by timestamp 72, 73
using, to view sessionize web server

log data 74-76
Apache Pig 0.10

URL, for installing 224
Apache Thrift

about 54
using, to serialize data 54-57

Armed Conflict Location Event Data. See
ACLED

associative 154
Audioscrobbler dataset

about 171
outliers trimming, Datafu used 174
URL, for downloading 171, 174

AvroWrapper class 53
AvroWriter job 53
AvroWriter MapReduce job 52

B
bad records

skipping, by enabling MapReduce
jobs 217-219

Before annotation 213
block compression option 49
block replication 39
block size

setting, for HDFS 64
Boolean expressions 283
Bot traffic

about 69
filtering, Apache Pig UDF used 69

BreadtFirstTextOutputFormat class 196
BSON object 33
Builder pattern 262, 263

291

Bulk Synchronous Parallel (BSP)
about 178
URL 180

bzip2 43

C
CachedConfiguration.getInstance()

static method 288
coalesce() method 160
CDH3

about 17
URL 25, 33

cell-level security
enforcing on scans, Accumulo

used 278, -282
cleanAndValidatePoint() private method 248
cluster

data moving between, distributed copy
used 15-18

monitoring, Ganglia used 239-241
new nodes, adding 234, 235

CLUSTER BY 170
coalesce() method 160
ColumnUpdate object 269
ColumnVisibility 283
Combiners

used, for counting distinct IPs in weblog
data 150-155

common join
STREAMTABLE hint 144
versus map-side join 144

commutative 154
CompositeKey class 84
CompositeKeyParitioner class 84
compute() function 190, 198, 199
concat_ws() function 112
Connector instance 280
constraint class

about 269
building 270
installing, on TabletServer 270

context class 211
copyFromLocal command 12
copyToLocal command 12, 13
copyToLocal Hadoop shell command 11

Cosine similarity
about 171
calculating, Pig used 171-173

counters
about 210
using in MapReduce job, to track bad records

210-212
using, in streaming job 220

CREATE command 107
create() method 42
createRecordReader() method 104
current_diff 169
current_loc 169
Cyclic Redundancy Check (CRC) 12

D
data

compressing, LZO used 42-45
exporting from MySQL into HDFS, Sqoop

used 21-24
importing from MySQL into HDFS, Sqoop

used 16-20
joining, Apache Pig replicated join

used 132, 133
joining in mapper, MapReduce

used 128-131
moving between clusters, distributed

copy used 15, 16
sorting, Apache Pig used 73

dataflow programs
example data generating, URL for 225

Datafu
about 174
Audioscrobbler dataset, outliers trimming

from 174
data locality 40
DataNode 40
data serialization

Apache Avro used 50
Apache Thrift used 54
Protocol Buffers used 58

datediff() argument 158
date format strings 158
debugging information

displaying, task status messages
updated 222-224

292

dfs.block.size property 64
dfs.replication property 63, 230
distcp command 16
DistinctCounterJob 153
distinct IPs

counting in weblog data, Combiners used
150-155

counting in weblog data, MapReduce used
150-155

counting, MapReduce used 150, 151
DISTRIBUTE BY 170
distributed breadth-first search

performing, Apache Giraph used 192-199
DistributedCache class 131
distributed cache mechanism 71
distributed copy

used, for moving data between
clusters 15-18

DistributedLzoIndexer 45
DROP temporary tables 110
dump command 37

E
Export HIVE_AUX_JARS_PATH 165
end_date 169
end_time_obj 169
EvalFunc abstract class 76
EvalFunc class 76
evaluate() method 164
event_date field 92
event dates

sorting, Hive date UDFs used 156, 157
transforming, Hive date UDFs used 156, 157

exec(Tuple t) method 71
external table

dropping 107
mapping over weblog data in HDFS,

Hive used 106, 107

F
field constraint

setting, to input geographic event data
in Accumulo 264-269

fields
concatenating in weblog data, Hive string

UDFs used 110, 111

FileInputFormat class 101, 104
FileSystem API 42
FileSystem class 14, 42
FileSystem.get() method 42
FileSystem object 42
FilterFunc abstract class 69
Flume

using, to load data into HDFS 37
flushDB() method 148
from_unixtime() 160
fs.checkpoint.dir property 237
fs.default.name parameter 42
fs.default.name property 216, 230
fully-distributed mode

about 227
Hadoop, starting in 231-233

G
Ganglia

used, for monitoring cluster 239-241
Ganglia meta daemon (gmetad) 239
Ganglia monitoring daemon (gmond) 239
geographical event data

cleaning, Hive used 84-88
cleaning, Python used 84-88
reading, by creating custom Hadoop Writable

98-104
reading, by creating custom

InputFormat 98--104
transforming, Hive used 84-88
transforming, Python used 84-88

geographic event data
bulk importing into Accumulo, MapReduce

used 256-263
events sorting, Hive date UDFs used 156,

157
events transforming, Hive date UDFs used

156, 157
inputting in Accumulo, by setting custom field

constraint 264-269
per-month report of fatalities building over,

Hive used 159-161
geographic events

storing in Accumulo, by designing row key
246-254

get command 13

293

getCurrentVertex() method 182
getmerge command 14
getRecordReader() method 188
getReverseTime() function 254
getRowID() 247
getZOrderedCurve() method 247, 253
Giraph. See Apache Giraph
Git Client

URL 26, 33
GitHub

for Mac, URL 27, 33
for Windows, URL 27, 33

Google BigTable design
URL 245

Google BigTable design approach
URL 245

Google Pregel paper 180
Greenplum external table

HDFS, using 35, 36
GroupComparator class 84
GzipCodec 46

H
Hadoop

about 8, 209, 212
cluster monitoring, Ganglia used 239-241
new nodes, adding to existing

cluster 234, 235
rebalancing 236
starting, in fully-distributed mode 231-233
starting, in pseudo-distributed mode 228-230
streaming job, executing 221
URL 43

Hadoop Distributed Copy (distcp) tool 15
Hadoop Distributed File System. See HDFS
hadoop fs -COMMAND 8
Hadoop FS shell 46
hadoop mradmin -refreshNodes command

237
Hadoop shell commands

used, for exporting data 8-12
used, for importing data 8-12

hadoop shell script 8
Hadoop streaming

using, to perform time series analytic 89-93
using, with language 93

hadoop-streaming.jar file 89
Hadoop Writable

creating, to read geographical event data
98-104

HashSet instance 71
HDFS

about 8, 39
block size, setting 64
data exporting from MySQL, Sqoop

used 21--24
data exporting, Hadoop shell commands

used 8-12
data exporting, into MongoDB 26-30
data exporting into MongoDB, Pig

used 33-35
data, importing from MongoDB 30-33
data importing from MySQL, Sqoop

used 16-20
data importing, Hadoop shell commands

used 8-12
data loading, Flume used 37
data, reading to 40-42
data, writing to 40-42
external table, mapping 106
external table over weblog data,

mapping 106, 107
replication factor, setting 63
services 40
using, in Greenplum external table 35, 36

HdfsReader class 42
HDFS, services

DatanNode 40
NameNode 40
Secondary NameNode 40

hdfs-site.xml file 64
HdfsWriter class 42
Hive

custom UDF, implementing 161-164
existing UDFs, checking out 164
multitable join support 114
ON operator 114
used, for cleaning geographical event

data 84-88
used for mapping external table over weblog,

in HDFS 106, 107
used, for marking non-violence longest

period 165-169

294

used, for transforming geographical
event data 84-88

using to build per-month report of fatalities,
over geographic event data 159-161

using, to create tables from weblog query
results 108-110

using to intersect weblog IPs and determine
country 113, 114

Hive date UDFs
using to sort event dates, from geographic

event data 156, 157
using to transform event dates, from

geographic event data 156, 157
Hive query language 165
Hive string UDFs

using, to concatenate fields in weblog
data 110, 111

I
IdentityMapper 51, 212
IdentityMapperTest class 213
IllegalArgumentException exception 253
illustrate

using, to debug Apache Pig 224
InputFormat

creating, to read geographical event
data 98-104

input splits 43
InputStream object 42
INVALID_IP_ADDRESS counter 212
invalidZOrder() unit test method 250
io.compression.codecs property 45
ip field 80
isSplitable() method 104
IsUseragentBot class 70, 71, 72

J
JAVA_HOME environment property 228
Java Virtual Machine (JVM) 92
JobConf documentation

URL 13
JobConf.setMaxMapAttempts() method 218
JobConf.setMaxReduceAttempts() method

218
Job Tracker UI 222-224

JOIN statement 135
JOIN table 115

K
keys

Lexicographic sorting 255
key.toString() method 97
key-value store

used, for joining data 144
k-means 203

L
LineReader 188
LineRecordReader class 104
loadRedis() method 146, 148
LocalJobRunner class 217
local mode

MapReduce running jobs,
developing 215-217

MapReduce running jobs, testing 215- 217
LOCATION keyword 107
location_regains_mapper.py file 92
LZO

codec implementation, downloading 43
DistributedLzoIndexer 45
io.compression.codecs property 45
setting up, steps for 43
used, for data compressing 42-45
working 45

LzoIndexer 45
LzoTextInputFormat 45

M
Mahout. See Apache Mahout
main() method 185, 195
MapDriver class 214
map() function 118, 123, 152, 154
Map input records counter 210
map() method 131
map-only jobs 48
Mapper class 124

col_pos 154
outKey 154
outValue 154
pattern 154

295

mapred.cache.files property 131
mapred.child.java.opts property 242
mapred.compress.map.output property 243
mapred_excludes file 237
mapred.job.reuse.jvm.num.tasks property

243
mapred.job.tracker property 215, 217
mapred.map.child.java.opts property 242
mapred.map.output.compression.codec

property 243
mapred.map.tasks.speculative.execution

property 242
mapred.output.compression.codec

property 243
mapred.output.compression.type

property 243
mapred.output.compress property 243
mapred.reduce.child.java.opts property 242
mapred.reduce.tasks property 242
mapred.reduce.tasks.speculative.execution

property 242
mapred-site.xml configuration file 15, 233
mapred.skip.attempts.to.start.skipping

property 219
mapred.skip.map.auto.incr.proc.count

property 219
mapred.skip.map.max.skip.records property

219, 220
mapred.skip.out.dir property 219
mapred.skip.reduce.auto.incr.proc.count

property 219
mapred.tasktracker.reduce.tasks.maximum

property 12
mapred.textoutputformat.separator property

68
MapReduce

about 48
calculating, secondary sort used 78-84
distributed cache, using to find lines with

matching keywords over news
archives 120-125

output files naming, MultipleOutputs, using
94-97

used for aggregating sources in
Accumulo 283-288

used for bulk importing geographic event
data, into Accumulo 256-263

used, for counting distinct IPs 150, 151
used, for counting distinct IPs in weblog

data 150-155
used, for joining data in mapper 128-131
used, for transforming Apache logs into TSV

format 66-68
using, to calculate page views 78-84

MapReduce job, properties
mapred.skip.attempts.to.start.skipping

property 219
mapred.skip.map.auto.incr.proc.count

property 219
mapred.skip.map.max.skip.records

property 219, 220
mapred.skip.out.dir property 219
mapred.skip.reduce.auto.incr.proc.count

property 219
MapReduce jobs

-file parameter, using to pass required files 93
about 212
counters, using to track bad records 210-212
developing, with MRUnit 212
enabling, to skip bad records 217-219
MRUnit, URL for downloading 213
parameters, tuning 241, 243
testing, with MRUnit 213-215

MapReduce running jobs
in local mode, developing 215-217
in local mode, testing 215-217

MapReduce used
used, for generating n-grams over news ar-

chives 115-119
map-side join

about 128
auto-converting to 140
behavior 140
using, in Apache Hive 138-140
versus common join 144

masters configuration file 233
Maven 2.2

URL 200
merge join, Apache Pig

used, for joining sorted data 134, 135
Microsoft SQL Server

Sqoop, configuring for 25, 26
min() operator 155

296

Mockito
URL 215

MongoDB
data, exporting from HDFS 26-30
data, importing into HDFS 30-33

Mongo Hadoop Adaptor 27
URL 30, 34

Mongo Java Driver
URL 27, 30, 34

MRUnit
about 212
mapper, testing 213-215
URL, for downloading 213

MultipleOutputs
used, for naming output files in MapReduce

94-97
MySQL

data exporting into HDFS, Sqoop
used 21-24

data importing into HDFS, Sqoop
used 16-20

MySQL JDBC driver JAR file 17
mysql.user table 19

N
NameNode failure

recovering from 237, 238
news archives

n-grams generating over, MapReduce
used 115-119

NGramMapper class 119
n-grams

generating, over news archives,
MapReduce used 115-119

Nigera_ACLED_cleaned.tsv dataset 141, 159
nigeria_holidays table 140
nobots relationship 73
nobots_weblogs relation 135
nodes

adding, to existing cluster 234, 235
decommissioning 236

non-violence longest period
marking, Hive used 165-169

NullWritable 120
NumberFormatException exception 253

O
ON operator 114
operating modes, hadoop

fully-distributed mode 227
pseudo-distributed mode 227
standalone mode 227

optimized full outer joins
using, in Apache Hive 141-143

ORDER BY 170
ORDER BY relational operator 73
org.apache.hadoop.fs.FileSystem object 11
org.apache.hadoop.fs.FsShell class 11
OutputStream object 42
output.write() method 97

P
PageRank

with Apache Giraph 178, 179
page views

calculating, secondary sort used 78-84
per-month report of fatalities

building over geographic event data, Hive
used 159-161

Pig
used, for calculating Cosine

similarity 171-173
used for exporting data into MongoDB,

from HDFS 33-35
play counts 174
prev_date 168
protobufRecord object 62
ProtobufWritable class 62
ProtobufWritable instance 62
Protocol Buffers

using, to serialize data 58-62
pseudo-distributed mode

about 227
Hadoop, starting in 228-230

Python
AS keyword, used for type casing values 88
used, for cleaning geographical event

data 84-88
used, for transforming geographical event

data 84-88
using, to extend Apache Pig

functionality 77, 78

297

Python streaming
using, to perform time series analytic 89-93

Q
QL statement 88
Quantile UDF 174, 175
query

issuing, SumCombiner used 274, 277
query results

limiting, regex filtering iterator used 270-273

R
read compression option 49
Record class 62
record-skipping 218
Redis

about 144
URL 148
used, for joining data in MapReduce 145

reduce() function 153
reduce() method 154
Reducer class 154
reduce-side join 128, 132
regex filtering iterator

used, for limiting query results 270-273
removeAndSetOutput() method 117
removeAndSetPath() method 120
replicated join, Apache Pig

used, for joining data 132, 133
replication factor

setting, for HDFS 63
replication factor setting 39
request_date field 110
request_time field 110
Resource Description Framework (RDF) 180
rowCount variable 224
row key

designing, to store geographic events in
Accumulo 246-254

run() method 97, 119, 124, 151, 184, 218,
257, 285

runTest() method 214

S
scans

cell-level security enforcing, Accumulo used
278-282

Sqoop
configuring, for Microsoft SQL Server 25, 26

Secondary NameNode 40
secondary sort

using, to calculate page views 78-82, 83, 84
select() method 148
SELECT statement 158
SELECT TRANSFORM 170
seq2sparse arguments 204

-a arguments 205
--input arguments 204
-md arguments 205
-ml arguments 205
--namedVector arguments 204
-ng arguments 205
--output arguments 204
-s arguments 205
-wt arguments 205
-x arguments 205

seqdirectory tool 204
SequenceFileInputFormat.class 48
SequenceFiles

about 49
block compression option 49
data, reading to 46, 47
data, writing to 46, 47
read compression option 49
uncompressed option 49

SequenceWriter class 48
SerDe 107
sessionize web server log data

viewing, Apache Pig used 74, 76
setAttemptsToStartSkipping() method 218
setJarByClass() method 119, 154
set() method 148
setNumReduceTasks() method 12
setSkipOutputPath() method 218
setStatus() method 223
setup() method 124, 131, 213
setup() routine 123
shell commands

URL 9

298

SimpleDateFormat pattern 264
single-source shortest-path

First superstep (S0) 190
second superstep (S1) 191
with Apache Giraph 180-188

Sinks 38
skewed data

joining, Apache Pig skewed join
used 136, 137

skewed join, Apache Pig
used, for joining skewed data 136, 137

SkipBadRecords class 218
slaves configuration file 232
SORT BY 170
SortComparator class 84
sorted data

joining, Apache Pig merge join used 134, 135
sources

about 38
aggregating in Accumulo, MapReduce

used 283-288
spiders 69
split points 263
splittable 43
Sqoop

URL 21
used for exporting from MySQL, into

HDFS 21-24
used for importing from MySQL, into

HDFS 16-20
standalone mode 227
start_date 168
start_time_obj 169
startTime variable 224
stderr 221
stdin 220
stdout 220
streaming_counters job 221
streaming job

counters, using 220
executing, streaming_counters.py

program used 221
StreamingQuantile UDF 176
string fields 109
String[] parameters 247
STRING type 88
strip() method 88

SumCombiner
used, for issuing query 274, 277
using, in Accumulo 273-277

T
TableFoo FULL OUTER JOIN TableBar 140
TableFoo LEFT OUTER JOIN TableBar 140
TableFoo RIGHT OUTER JOIN TABLE B 140
TabletServer

constraint class, installing 270
tab-separated values (TSV) 66
task status messages

updating, to display debugging
information 222-224

TestCase class 213
testclassifier tool 207
testFullKey() unit test method 252
testIdentityMapper1() method 213
testIdentityMapper2() method 214
testInvalidReverseTime() unit test

method 252
testValidReverseTime() unit test method 252
TextOutputFormat class 68
thriftRecord object 58
ThriftWrittable class 57
time series analytic

creating, Hadoop streaming used 89-93
timestamp

web server log data sorting, Apache Pig
used 72, 73

timestamp field 73
Tool interface 285
ToolRunner class 244
ToolRunner setup 115
train_formated dataset 207
TRANSFORM operator 87
TSV format

Apache logs transforming, MapReduce
used 66-68

type casing values
AS keyword used 88

U
uncompressed option 49
unix_timestamp() 160

299

user_artist_data.txt file 173
user-defined filter function (UDF) 69

V
VALID_IP_ADDRESS regular expression 212
validZOrder() unit test method 249

W
weblog data

distinct IPs counting, Combiners
used 150-155

distinct IPs counting, MapReduce
used 150-155

Hive string UDFs, using to concatenate fields
110, 111

weblog_entries_bad_records.txt dataset
URL, for downloading 210

weblog_entries dataset 110, 150
weblog_entries.txt dataset 40, 46, 50

URL, for downloading 10
weblog IPs

intersecting, Hive used 113, 114
WeblogMapper class 53
WeblogMapper map() method 53
weblog query results

tables creating, Hive used 108-110
WeblogRecord class 53
WeblogRecord object 52, 53, 55, 57, 60
WeblogRecord.Record object 62
WhitespaceAnalyzer 205
withInput() method 214
withOutput() method 214
WritableComparable class 57, 62
WritableComparable interface 104
writeVertex() method 199

Z
Z-order curve 255

Thank you for buying

Hadoop Real-World Solutions Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Hadoop Beginner's Guide
ISBN: 978-1-849517-30-0 Paperback: 340 pages

Learn how to crunch Big data to extract meaning from
the data avalanche

1. Learn tools and techniques that let you approach
Big data with relish and not fear

2. Shows how to build a complete infrastructure to
handle your needs as your data grows

3. Hands-on examples in each chapter give the big
picture while also giving direct experience

Hadoop MapReduce
Cookbook
ISBN: 978-1-849517-28-7 Paperback: 308 pages

Recipes for analyzing large and complex datasets with
Hadoop MapReduce

1. Learn to process large and complex datasets,
starting simply, then diving in deep

2. Solve complex Big data problems such as
classifications, finding relationships, online
marketing and recommendations

3. More than 50 Hadoop MapReduce recipes,
presented in a simple and straightforward
manner, with step-by-step instructions and
real-world examples

Please check www.packtpub.com for information on our titles

HBase Administration
Cookbook
ISBN: 978-1-849517-14-0 Paperback: 332 pages

Master HBase configuration and administration for
optimum database performance

1. Move large amounts of data into HBase and learn
how to manage it efficiently

2. Set up HBase on the cloud, get it ready for
production, and run it smoothly with high
performance

3. Maximize the ability of HBase with the Hadoop
eco-system including HDFS, MapReduce,
Zookeeper, and Hive

Cassandra High Performance
Cookbook
ISBN: 978-1-849515-12-2 Paperback: 310 pages

Over 150 recipes to design and optimize large-scale
Apache Cassandra deployments

1. Get the best out of Cassandra using this efficient
recipe bank

2. Configure and tune Cassandra components to
enhance performance

3. Deploy Cassandra in various environments and
monitor its performance

Please check www.packtpub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.packtpub.com
	Table of Contents
	Preface
	Chapter 1: Hadoop Distributed File System – Importing and Exporting Data
	Introduction
	Importing and exporting data into HDFS using Hadoop shell commands
	Moving data efficiently between clusters using Distributed Copy
	Importing data from MySQL into HDFS using Sqoop
	Exporting data from HDFS into MySQL
using Sqoop
	Configuring Sqoop for Microsoft SQL Server
	Exporting data from HDFS into MongoDB
	Importing data from MongoDB into HDFS
	Exporting data from HDFS into MongoDB using Pig
	Using HDFS in a Greenplum external table
	Using Flume to load data into HDFS

	Chapter 2: HDFS
	Introduction
	Reading and writing data to HDFS
	Compressing data using LZO
	Reading and writing data to SequenceFiles
	Using Apache Avro to serialize data
	Using Apache Thrift to serialize data
	Using Protocol Buffers to serialize data
	Setting the replication factor for HDFS
	Setting the block size for HDFS

	Chapter 3: Extracting and Transforming Data
	Introduction
	Transforming Apache logs into TSV format using MapReduce
	Using Apache Pig to filter bot traffic from web server logs
	Using Apache Pig to sort web server log data by timestamp
	Using Apache Pig to sessionize web server log data
	Using Python to extend Apache Pig functionality
	Using MapReduce and secondary sort to calculate page views
	Using Hive and Python to clean and transform geographical event data
	Using Python and Hadoop Streaming to perform a time series analytic
	Using MultipleOutputs in MapReduce to name output files
	Creating custom Hadoop Writable and InputFormat to read geographical event data

	Chapter 4: Performing Common Tasks Using Hive, Pig, and MapReduce
	Introduction
	Using Hive to map an external table over weblog data in HDFS
	Using Hive to dynamically create tables from the results of a weblog query
	Using the Hive string UDFs to concatenate fields in weblog data
	Using Hive to intersect weblog IPs and determine the country
	Generating n-grams over news archives using MapReduce
	Using the distributed cache in MapReduce
	to find lines that contain matching keywords over news archives
	Using Pig to load a table and perform a SELECT operation with GROUP BY

	Chapter 5: Advanced Joins
	Introduction
	Joining data in the Mapper using MapReduce
	Joining data using Apache Pig replicated join
	Joining sorted data using Apache Pig
merge join
	Joining skewed data using Apache Pig skewed join
	Using a map-side join in Apache Hive to analyze geographical events
	Using optimized full outer joins in Apache Hive to analyze geographical events
	Joining data using an external key-value store (Redis)

	Chapter 6: Big Data Analysis
	Introduction
	Counting distinct IPs in web log data using MapReduce and Combiners
	Using Hive date UDFs to transform and sort event dates from geographic event data
	Using Hive to build a per-month report of fatalities over geographic event data
	Implementing a custom UDF in Hive to help
	validate source reliability over geographic event data
	Marking the longest period of non-violence
	using Hive MAP/REDUCE operators and Python
	Calculating the cosine similarity of artists in the Audioscrobbler dataset using Pig
	Trim Outliers from the Audioscrobbler dataset using Pig and datafu

	Chapter 7: Advanced Big Data Analysis
	Introduction
	PageRank with Apache Giraph
	Single-source shortest-path with Apache Giraph
	Using Apache Giraph to perform a distributed breadth-first search
	Collaborative filtering with Apache Mahout
	Clustering with Apache Mahout
	Sentiment classification with Apache Mahout

	Chapter 8: Debugging
	Introduction
	Using Counters in a MapReduce job to
track bad records
	Developing and testing MapReduce jobs
with MRUnit
	Developing and testing MapReduce jobs running in local mode
	Enabling MapReduce jobs to skip bad records
	Using Counters in a streaming job
	Updating task status messages to display debugging information
	Using illustrate to debug Pig jobs

	Chapter 9: System Administration
	Introduction
	Starting Hadoop in pseudo-distributed mode
	Starting Hadoop in distributed mode
	Adding new nodes to an existing cluster
	Safely decommissioning nodes
	Recovering from a NameNode failure
	Monitoring cluster health using Ganglia
	Tuning MapReduce job parameters

	Chapter 10: Persistence Using Apache Accumulo
	Introduction
	Designing a row key to store geographic events in Accumulo
	Using MapReduce to bulk import geographic event data into Accumulo
	Setting a custom field constraint for
	inputting geographic event data in Accumulo
	Limiting query results using the regex filtering iterator
	Counting fatalities for different versions of the same key using SumCombiner
	Enforcing cell-level security on scans using Accumulo
	Aggregating sources in Accumulo using MapReduce

	Index

